1
GATE EE 2018
Numerical
+2
-0.67
The figure shows two buck converters connected in parallel. The common input dc voltage for the converters has a value of 100 V. The converters have inductors of identical value. The load resistance is 1 $$\Omega$$. The capacitor voltage has negligible ripple. Both converters operate in the continuous conduction mode. The switching frequency is 1 kHz, and the switch control signals are as shown. The circuit operates in the steady state. Assuming that the converters share the load equally, the average value of $${i_{S1}}$$, the current of switch S1 (in Ampere), is _____ (up to 2 decimal places). 2
GATE EE 2018
Numerical
+2
-0.67
A dc to dc converter shown in the figure is charging a battery bank, B2 whose voltage is constant at 150 V. B1 is another battery bank whose voltage is constant at 50 V. The value of the inductor, L is 5 mH and the ideal switch, S is operated with a switching frequency of 5 kHz with a duty ratio of 0.4. Once the circuit has attained steady state and assuming the diode D to be ideal, the power transferred from B1 to B2 (in Watt) is ___________ (up to 2 decimal places). 3
GATE EE 2017 Set 1
+2
-0.6
The input voltage $${V_{DC}}$$ of the buck-boost converter shown below varies from $$32$$ $$V$$ to $$72$$ $$V.$$ Assume that all components are ideal, inductor current is continuous, and output voltage is ripple free. The range of duty ratio $$D$$ of the converter for which the magnitude of the steady state output voltage remains constant at $$48$$ $$V$$ is A
$${2 \over 5} \le D \le {3 \over 5}$$
B
$${2 \over 5} \le D \le {3 \over 4}$$
C
$$0 \le D \le 1$$
D
$${1 \over 3} \le D \le {2 \over 3}$$
4
GATE EE 2017 Set 2
Numerical
+2
-0
In the circuit shown all elements are ideal and the switch $$S$$ is operated at $$10$$ $$kHz$$ and $$60$$% duty ratio. The capacitor is large enough so that the ripple across it is negligible and at steady state acquires a voltage as shown. The peak current in amperes drawn from the $$50$$ $$V$$ $$DC$$ source is ________. (Give the answer up to one decimal place.) GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement
EXAM MAP
Joint Entrance Examination