1
JEE Advanced 2025 Paper 2 Online
Numerical
+4
-0
Change Language

A linear octasaccharide (molar mass $=1024 \mathrm{~g} \mathrm{~mol}^{-1}$ ) on complete hydrolysis produces three monosaccharides: ribose, 2-deoxyribose and glucose. The amount of 2-deoxyribose formed is $58.26 \%(\mathrm{w} / \mathrm{w})$ of the total amount of the monosaccharides produced in the hydrolyzed products. The number of ribose unit(s) present in one molecule of octasaccharide is $\qquad$ .

Use: Molar mass $\left(\right.$ in g $\left.\mathrm{mol}^{-1}\right)$ : ribose $=150,2$-deoxyribose $=134$, glucose $=180$;

Atomic mass (in amu): $\mathrm{H}=1, \mathrm{O}=16$

Your input ____
2
JEE Advanced 2025 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $x_0$ be the real number such that $e^{x_0} + x_0 = 0$. For a given real number $\alpha$, define

$$g(x) = \frac{3x e^x + 3x - \alpha e^x - \alpha x}{3(e^x + 1)}$$

for all real numbers $x$.

Then which one of the following statements is TRUE?

A

For $\alpha = 2$, $\displaystyle \lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = 0$

B

For $\alpha = 2$, $\displaystyle \lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = 1$

C

For $\alpha = 3$, $\displaystyle \lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = 0$

D

For $\alpha = 3$, $\displaystyle \lim_{x \to x_0} \left| \frac{g(x) + e^{x_0}}{x - x_0} \right| = \frac{2}{3}$

3
JEE Advanced 2025 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let ℝ denote the set of all real numbers. Then the area of the region

$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x}, 5x - 4y - 1 > 0, 4x + 4y - 17 < 0 \right\} $

is

A

$\frac{17}{16} - \log_e{4}$

B

$\frac{33}{8} - \log_e{4}$

C

$\frac{57}{8} - \log_e{4}$

D

$\frac{17}{2} - \log_e{4}$

4
JEE Advanced 2025 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

The total number of real solutions of the equation

$ \theta = \tan^{-1}(2 \tan \theta) - \frac{1}{2} \sin^{-1}\left(\frac{6 \tan \theta}{9 + \tan^2 \theta}\right) $

is

(Here, the inverse trigonometric functions $\sin^{-1} x$ and $\tan^{-1} x$ assume values in $[ -\frac{\pi}{2}, \frac{\pi}{2}]$ and $( -\frac{\pi}{2}, \frac{\pi}{2})$, respectively.)

A

1

B

2

C

3

D

5

JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12