Let S denote the locus of the point of intersection of the pair of lines
$4x - 3y = 12\alpha$,
$4\alpha x + 3\alpha y = 12$,
where $\alpha$ varies over the set of non-zero real numbers. Let T be the tangent to S passing through the points $(p, 0)$ and $(0, q)$, $q > 0$, and parallel to the line $4x - \frac{3}{\sqrt{2}} y = 0$.
Then the value of $pq$ is :
Then which of the following statements is (are) TRUE?
Let $S$ denote the locus of the mid-points of those chords of the parabola $y^2=x$, such that the area of the region enclosed between the parabola and the chord is $\frac{4}{3}$. Let $\mathcal{R}$ denote the region lying in the first quadrant, enclosed by the parabola $y^2=x$, the curve $S$, and the lines $x=1$ and $x=4$.
Then which of the following statements is (are) TRUE?
Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right)$ be two distinct points on the ellipse
$$ \frac{x^2}{9}+\frac{y^2}{4}=1 $$
such that $y_1>0$, and $y_2>0$. Let $C$ denote the circle $x^2+y^2=9$, and $M$ be the point $(3,0)$.
Suppose the line $x=x_1$ intersects $C$ at $R$, and the line $x=x_2$ intersects C at $S$, such that the $y$-coordinates of $R$ and $S$ are positive. Let $\angle R O M=\frac{\pi}{6}$ and $\angle S O M=\frac{\pi}{3}$, where $O$ denotes the origin $(0,0)$. Let $|X Y|$ denote the length of the line segment $X Y$.
Then which of the following statements is (are) TRUE?