Let X and Y be two arbitrary, 3 $$\times$$ 3, non-zero, skew-symmetric matrices and Z be an arbitrary 3 $$\times$$ 3, non-zero, symmetric matrix. Then which of the following matrices is(are) skew symmetric?
Which of the following values of $$\alpha$$ satisfy the equation
$$\left| {\matrix{ {{{(1 - \alpha )}^2}} & {{{(1 + 2\alpha )}^2}} & {{{(1 + 3\alpha )}^2}} \cr {{{(2 + \alpha )}^2}} & {{{(2 + 2\alpha )}^2}} & {{{(2 + 3\alpha )}^2}} \cr {{{(3 + \alpha )}^2}} & {{{(3 + 2\alpha )}^2}} & {{{(3 + 3\alpha )}^2}} \cr } } \right| = - 648\alpha $$ ?
Let $$g:R \to R$$ be a differentiable function with $$g(0) = 0$$, $$g'(0) = 0$$ and $$g'(1) \ne 0$$. Let
$$f(x) = \left\{ {\matrix{ {{x \over {|x|}}g(x),} & {x \ne 0} \cr {0,} & {x = 0} \cr } } \right.$$
and $$h(x) = {e^{|x|}}$$ for all $$x \in R$$. Let $$(f\, \circ \,h)(x)$$ denote $$f(h(x))$$ and $$(h\, \circ \,f)(x)$$ denote $$f(f(x))$$. Then which of the following is (are) true?
Let $$f(x) = \sin \left( {{\pi \over 6}\sin \left( {{\pi \over 2}\sin x} \right)} \right)$$ for all $$x \in R$$ and g(x) = $${{\pi \over 2}\sin x}$$ for all x$$\in$$R. Let $$(f \circ g)(x)$$ denote f(g(x)) and $$(g \circ f)(x)$$ denote g(f(x)). Then which of the following is/are true?