1
JEE Advanced 2015 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2

The % yield of ammonia as a function of time in the reaction

N2(g) + 3H2(g) $$\rightleftharpoons$$ 2NH3(g), $$\Delta$$H < 0 at (P, T1) is given below:

JEE Advanced 2015 Paper 1 Offline Chemistry - Chemical Kinetics and Nuclear Chemistry Question 12 English

If this reactions is conducted at (P, T2), with T2 > T1, the % yield of ammonia as a function of time is represented by

A
JEE Advanced 2015 Paper 1 Offline Chemistry - Chemical Kinetics and Nuclear Chemistry Question 12 English Option 1
B
JEE Advanced 2015 Paper 1 Offline Chemistry - Chemical Kinetics and Nuclear Chemistry Question 12 English Option 2
C
JEE Advanced 2015 Paper 1 Offline Chemistry - Chemical Kinetics and Nuclear Chemistry Question 12 English Option 3
D
JEE Advanced 2015 Paper 1 Offline Chemistry - Chemical Kinetics and Nuclear Chemistry Question 12 English Option 4
2
JEE Advanced 2015 Paper 1 Offline
Numerical
+4
-0
Let n be the number of ways in which 5 boys and 5 girls can stand in a queue in such a way that all the girls stand consecutively in the queue. Let m be the number of ways in which 5 boys and 5 girls can stand in a queue in such a way that exactly four girls stand consecutively in the queue. Then the value of $${m \over n}$$ is
Your input ____
3
JEE Advanced 2015 Paper 1 Offline
Numerical
+4
-0
The number of distinct solutions of the equation

$${5 \over 4}{\cos ^2}\,2x + {\cos ^4}\,x + {\sin ^4}\,x + {\cos ^6}\,x + {\sin ^6}\,x\, = \,2$$

in the interval $$\left[ {0,\,2\pi } \right]$$ is
Your input ____
4
JEE Advanced 2015 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-0
Match the following :

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column $$I$$
(A)$$\,\,\,\,$$ In $${R^2},$$ If the magnitude of the projection vector of the vector $$\alpha \widehat i + \beta \widehat j$$ on $$\sqrt 3 \widehat i + \widehat j$$ and If $$\alpha = 2 + \sqrt 3 \beta ,$$ then possible value of $$\left| \alpha \right|$$ is/are
(B)$$\,\,\,\,$$ Let $$a$$ and $$b$$ be real numbers such that the function $$f\left( x \right) = \left\{ {\matrix{ { - 3a{x^2} - 2,} & {x < 1} \cr {bx + {a^2},} & {x \ge 1} \cr } } \right.$$ if differentiable for all $$x \in R$$. Then possible value of $$a$$ is (are)
(C)$$\,\,\,\,$$ Let $$\omega \ne 1$$ be a complex cube root of unity. If $${\left( {3 - 3\omega + 2{\omega ^2}} \right)^{4n + 3}} + {\left( {2 + 3\omega - 3{\omega ^2}} \right)^{4n + 3}} + {\left( { - 3 + 2\omega + 3{\omega ^2}} \right)^{4n + 3}} = 0,$$ then possible value (s) of $$n$$ is (are)
(D)$$\,\,\,\,$$ Let the harmonic mean of two positive real numbers $$a$$ and $$b$$ be $$4.$$ If $$q$$ is a positive real nimber such that $$a, 5, q, b$$ is an arithmetic progression, then the value(s) of $$\left| {q - a} \right|$$ is (are)

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column $$II$$
(p)$$\,\,\,\,$$ $$1$$
(q)$$\,\,\,\,$$ $$2$$
(r)$$\,\,\,\,$$ $$3$$
(s)$$\,\,\,\,$$ $$4$$
(t)$$\,\,\,\,$$ $$5$$

A
$$\left( A \right) \to p, q;\,\,\left( B \right) \to p,q;\,\,\left( C \right) \to p,q,s,t;\,\,\left( D \right) \to q,t$$
B
$$\left( A \right) \to q;\,\,\left( B \right) \to q;\,\,\left( C \right) \to p,q,s,t;\,\,\left( D \right) \to q,t$$
C
$$\left( A \right) \to q;\,\,\left( B \right) \to p,q;\,\,\left( C \right) \to p,t;\,\,\left( D \right) \to q,t$$
D
$$\left( A \right) \to q;\,\,\left( B \right) \to p,q;\,\,\left( C \right) \to p,q,s,t;\,\,\left( D \right) \to q$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12