1
JEE Advanced 2015 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2

The % yield of ammonia as a function of time in the reaction

N2(g) + 3H2(g) $$\rightleftharpoons$$ 2NH3(g), $$\Delta$$H < 0 at (P, T1) is given below:

JEE Advanced 2015 Paper 1 Offline Chemistry - Chemical Kinetics and Nuclear Chemistry Question 13 English

If this reactions is conducted at (P, T2), with T2 > T1, the % yield of ammonia as a function of time is represented by

A
JEE Advanced 2015 Paper 1 Offline Chemistry - Chemical Kinetics and Nuclear Chemistry Question 13 English Option 1
B
JEE Advanced 2015 Paper 1 Offline Chemistry - Chemical Kinetics and Nuclear Chemistry Question 13 English Option 2
C
JEE Advanced 2015 Paper 1 Offline Chemistry - Chemical Kinetics and Nuclear Chemistry Question 13 English Option 3
D
JEE Advanced 2015 Paper 1 Offline Chemistry - Chemical Kinetics and Nuclear Chemistry Question 13 English Option 4
2
JEE Advanced 2015 Paper 1 Offline
Numerical
+4
-0
Let n be the number of ways in which 5 boys and 5 girls can stand in a queue in such a way that all the girls stand consecutively in the queue. Let m be the number of ways in which 5 boys and 5 girls can stand in a queue in such a way that exactly four girls stand consecutively in the queue. Then the value of $${m \over n}$$ is
Your input ____
3
JEE Advanced 2015 Paper 1 Offline
Numerical
+4
-0
The number of distinct solutions of the equation

$${5 \over 4}{\cos ^2}\,2x + {\cos ^4}\,x + {\sin ^4}\,x + {\cos ^6}\,x + {\sin ^6}\,x\, = \,2$$

in the interval $$\left[ {0,\,2\pi } \right]$$ is
Your input ____
4
JEE Advanced 2015 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-0
Match the following :

Column I Column I
(A) $\begin{array}{l}\text { In a triangle } \Delta X Y Z \text {, let } a, b \text { and } c \text { be the lengths of the sides } \\\text { opposite to the angles } X, Y \text { and } Z \text {, respectively. If } 2\left(a^2-b^2\right)=c^2 \\\text { and } \lambda=\frac{\sin (X-Y)}{\sin Z} \text {, then possible values of } n \text { for which } \cos (n \lambda) \\=0 \text { is (are) }\end{array}$ (P) 1
(B) $\begin{array}{l}\text { In a triangle } \triangle X Y Z \text {, let } a, b \text { and } c \text { be the lengths of the sides } \\\text { opposite to the angles } X, Y \text { and } Z \text {, respectively. If } 1+\cos 2 X-2 \\\cos 2 Y=2 \sin X \sin Y \text {, then possible value(s) of } \frac{a}{b} \text { is (are) }\end{array}$ (Q) 2
(C) $\begin{array}{l}\text { In } \mathbb{R}^2 \text {, let } \sqrt{3} \hat{i}+\hat{j}, \hat{i}+\sqrt{3} \hat{j} \text { and } \beta \hat{i}+(1-\beta) \hat{j} \text { be the position } \\\text { vectors of } X, Y \text { and } Z \text { with respect of the origin } \mathrm{O} \text {, respectively. If } \\\text { the distance of } \mathrm{Z} \text { from the bisector of the acute angle of } \overrightarrow{\mathrm{OX}} \text { with } \\\overrightarrow{\mathrm{OY}} \text { is } \frac{3}{\sqrt{2}} \text {, then possible value(s) of }|\beta| \text { is (are) }\end{array}$ (R) 3
(D) $\begin{array}{l}\text { Suppose that } F(\alpha) \text { denotes the area of the region bounded by } \\x=0, x=2, y^2=4 x \text { and } y=|\alpha x-1|+|\alpha x-2|+\alpha x \text {, } \\\text { where, } \alpha \in\{0,1\} \text {. Then the value(s) of } F(\alpha)+\frac{8}{2} \sqrt{2} \text {, when } \alpha=0 \\\text { and } \alpha=1 \text {, is (are) }\end{array}$ (S) 5
(T) 6
A
$$\left( A \right) \to P,R;\,\,\left( B \right) \to P;\,\,\left( C \right) \to P,Q;\,\,\left( D \right) \to S,T$$
B
$$\left( A \right) \to P,R,S;\,\,\left( B \right) \to P;\,\,\left( C \right) \to P,Q;\,\,\left( D \right) \to S,T$$
C
$$\left( A \right) \to P,R,S;\,\,\left( B \right) \to P;\,\,\left( C \right) \to P;\,\,\left( D \right) \to S,T$$
D
$$\left( A \right) \to S;\,\,\left( B \right) \to P;\,\,\left( C \right) \to P;\,\,\left( D \right) \to S,T$$
JEE Advanced Papers
EXAM MAP