1
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+3
-0.75
The area bounded by the parabola $$y = {\left( {x + 1} \right)^2}$$ and
$$y = {\left( {x - 1} \right)^2}$$ and the line $$y=1/4$$ is
A
$$4$$ sq. units
B
$$1/6$$ sq. units
C
$$4/3$$ sq. units
D
$$1/3$$ sq. units
2
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
$$a,\,b,\,c$$ are integers, not all simultaneously equal and $$\omega $$ is cube root of unity $$\left( {\omega \ne 1} \right),$$ then minimum value of $$\left| {a + b\omega + c{\omega ^2}} \right|$$ is
A
0
B
1
C
$${{\sqrt 3 } \over 2}$$
D
$${1 \over 2}$$
3
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+3
-0.75
If $$\int\limits_{\sin x}^1 {{t^2}f\left( t \right)dt = 1 - \sin x,} $$ then f$$\left( {{1 \over {\sqrt 3 }}} \right)$$ is
A
$${1 \over 3}$$
B
$${{1 \over {\sqrt 3 }}}$$
C
$$3$$
D
$${\sqrt 3 }$$
4
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$P(x)$$ is a polynomial of degree less than or equal to $$2$$ and $$S$$ is the set of all such polynomials so that $$P(0)=0$$, $$P(1)=1$$ and $$P'\left( x \right) > 0\,\,\forall x \in \left[ {0,1} \right],$$ then
A
$$S = \phi $$
B
$$S = ax + \left( {1 - a} \right){x^2}\,\,\forall \,a \in \left( {0,2} \right)$$
C
$$S = ax + \left( {1 - a} \right){x^2}\,\,\forall \,a \in \left( {0,\infty } \right)$$
D
$$S = ax + \left( {1 - a} \right){x^2}\,\,\forall \,a \in \left( {0,1} \right)$$
JEE Advanced Papers
EXAM MAP