1
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+4
-1
If $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ are three non-zero, non-coplanar vectors and
$$\overrightarrow {{b_1}} = \overrightarrow b - {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,\overrightarrow {{b_2}} = \overrightarrow b + {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,$$
$$\overrightarrow {{c_1}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_2}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
$$\overrightarrow {{c_3}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_4}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
then the set of orthogonal vectors is
$$\overrightarrow {{b_1}} = \overrightarrow b - {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,\overrightarrow {{b_2}} = \overrightarrow b + {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,$$
$$\overrightarrow {{c_1}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_2}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
$$\overrightarrow {{c_3}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_4}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
then the set of orthogonal vectors is
2
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+4
-1
A variable plane at a distance of the one unit from the origin cuts the coordinates axes at $$A,$$ $$B$$ and $$C.$$ If the centroid $$D$$ $$(x, y, z)$$ of triangle $$ABC$$ satisfies the relation $${1 \over {{x^2}}} + {1 \over {{y^2}}} + {1 \over {{z^2}}} = k,$$ then the value $$k$$ is
3
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
A six faced fair dice is thrown until $$1$$ comes, then the probability that $$1$$ comes in even no. of trials is
4
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
The differential equation $${{dy} \over {dx}} = {{\sqrt {1 - {y^2}} } \over y}$$ determines a family of circles with
Paper analysis
Total Questions
Chemistry
3
Mathematics
22
Physics
2
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978