1
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+1
-0.25
The number of radial nodes of 3s and 2p orbitals are respectively
A
2, 0
B
0, 2
C
1, 2
D
2, 1
2
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+3
-0.75
$$\int\limits_{ - 2}^0 {\left\{ {{x^3} + 3{x^2} + 3x + 3 + \left( {x + 1} \right)\cos \left( {x + 1} \right)} \right\}\,\,dx} $$ is equal to
A
$$-4$$
B
$$0$$
C
$$4$$
D
$$6$$
3
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+4
-1
If $$\overrightarrow a \,,\,\overrightarrow b ,\overrightarrow c $$ are three non-zero, non-coplanar vectors and
$$\overrightarrow {{b_1}} = \overrightarrow b - {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,\overrightarrow {{b_2}} = \overrightarrow b + {{\overrightarrow b .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a ,$$
$$\overrightarrow {{c_1}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_2}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow a } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
$$\overrightarrow {{c_3}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a + {{\overrightarrow b .\,\overrightarrow c } \over {{{\left| c \right|}^2}}}{\overrightarrow b _1},\,\,\overrightarrow {{c_4}} = \overrightarrow c - {{\overrightarrow c .\,\overrightarrow a } \over {{{\left| {\overrightarrow c } \right|}^2}}}\overrightarrow a - {{\overrightarrow b \,.\,\overrightarrow c } \over {{{\left| {{{\overrightarrow b }_1}} \right|}^2}}}{\overrightarrow b _1},$$
then the set of orthogonal vectors is
A
$$\left( {\overrightarrow a ,\overrightarrow {{b_1}} ,\overrightarrow {{c_3}} } \right)$$
B
$$\left( {\overrightarrow a ,\overrightarrow {{b_1}} ,\overrightarrow {{c_2}} } \right)$$
C
$$\left( {\overrightarrow a ,\overrightarrow {{b_1}} ,\overrightarrow {{c_1}} } \right)$$
D
$$\left( {\overrightarrow a ,\overrightarrow {{b_2}} ,\overrightarrow {{c_2}} } \right)$$
4
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+4
-1
A variable plane at a distance of the one unit from the origin cuts the coordinates axes at $$A,$$ $$B$$ and $$C.$$ If the centroid $$D$$ $$(x, y, z)$$ of triangle $$ABC$$ satisfies the relation $${1 \over {{x^2}}} + {1 \over {{y^2}}} + {1 \over {{z^2}}} = k,$$ then the value $$k$$ is
A
$$3$$
B
$$1$$
C
$${1 \over 3}$$
D
$$9$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12