1
IIT-JEE 1990
Subjective
+4
-0
A vertical tower $$PQ$$ stands at a point $$P$$. Points $$A$$ and $$B$$ are located to the South and East of $$P$$ respectively. $$M$$ is the mid point of $$AB$$. $$PAM$$ is an equilateral triangle; and $$N$$ is the foot of the perpendicular from $$P$$ and $$AB$$. Let $$AN$$$$=20$$ mrtres and the angle of elevation of the top of the tower at $$N$$ is $${\tan ^{ - 1}}\left( 2 \right)$$. Determine the height of the tower and the angles of elevation of the top of the tower at $$A$$ and $$B$$.
2
IIT-JEE 1990
Subjective
+4
-0
Show that $$2\sin x + \tan x \ge 3x$$ where $$0 \le x < {\pi \over 2}$$.
3
IIT-JEE 1990
Subjective
+4
-0
A point $$P$$ is given on the circumference of a circle of radius $$r$$. Chord $$QR$$ is parallel to the tangent at $$P$$. Determine the maximum possible area of the triangle $$PQR$$.
4
IIT-JEE 1990
MCQ (Single Correct Answer)
+2
-0.5
Let $$f:R \to R$$ and $$\,\,g:R \to R$$ be continuous functions. Then the value of the integral
$$\int\limits_{ - \pi /2}^{\pi /2} {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]\left[ {g\left( x \right) - g\left( { - x} \right)} \right]dx} $$ is
A
$$\pi $$
B
$$1$$
C
$$-1$$
D
$$0$$
JEE Advanced Papers
EXAM MAP