1
IIT-JEE 1990
Subjective
+3
-0
Let $$\overrightarrow A = 2\overrightarrow i + \overrightarrow k ,\,\overrightarrow B = \overrightarrow i + \overrightarrow j + \overrightarrow k ,$$ and $$\overrightarrow C = 4\overrightarrow i - 3\overrightarrow j + 7\overrightarrow k .$$ Determine a vector $$\overrightarrow R .$$ Satisfying $$\overrightarrow R \times \overrightarrow B = \overrightarrow C \times \overrightarrow B $$ and $$\overrightarrow R \,.\,\overrightarrow A = 0$$
2
IIT-JEE 1990
Subjective
+4
-0
Let $${z_1}$$ = 10 + 6i and $${z_2}$$ = 4 + 6i. If Z is any complex number such that the argument of $${{(z - {z_1})} \over {(z - {z_2})}}\,is{\pi \over 4}$$ , then prove that $$\left| {z - 7 - 9i} \right| = 3\sqrt 2 $$.
3
IIT-JEE 1990
Fill in the Blanks
+2
-0
If $$\int {{{4{e^x} + 6{e^{ - x}}} \over {9{e^x} - 4{e^{ - x}}}}\,dx = Ax + B\,\,\log \left( {9{e^{2x}} - 4} \right) + C,} $$ then
$$A = .....,B = .....$$ and $$C = .....$$
4
IIT-JEE 1990
MCQ (Single Correct Answer)
+2
-0.5
The equation $$\left( {\cos p - 1} \right){x^2} + \left( {\cos p} \right)x + \sin p = 0\,$$ In the variable x, has real roots. Then p can take any value in the interval
A
$$\left( {0,2\pi } \right)\,$$
B
$$\left( { - \pi ,0} \right)\,\,\,$$
C
$$\left[ { - {\pi \over 2},{\pi \over 2}} \right]\,$$
D
$$\left( {0,\pi } \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12