1
IIT-JEE 1989
MCQ (More than One Correct Answer)
+2
-0.5
Let a, b, c be real numbers, $$a \ne 0$$. If $$\alpha \,$$ is a root of $${a^2}{x^2} + bx + c = 0$$. $$\beta \,$$ is the root of $${a^2}{x^2} - bx - c = 0$$ and $$0 < \alpha \, < \,\beta $$, then the equation $${a^2}{x^2} + 2bx + 2c = 0$$ has a root $$\gamma $$ that always satisfies
A
$$\gamma = {{\alpha + \beta } \over 2}$$
B
$$\gamma = \alpha + {\beta \over 2}$$
C
$$\gamma = \alpha $$
D
$$\alpha < \gamma < \beta $$
2
IIT-JEE 1989
MCQ (Single Correct Answer)
+2
-0.5
A five-digit numbers divisible by 3 is to be formed using the numerals 0, 1, 2, 3, 4 and 5, without repetition. The total number of ways this can be done is
A
216
B
240
C
600
D
3125
3
IIT-JEE 1989
Subjective
+3
-0
Using mathematical induction, prove that $${}^m{C_0}{}^n{C_k} + {}^m{C_1}{}^n{C_{k - 1}}\,\,\, + .....{}^m{C_k}{}^n{C_0} = {}^{\left( {m + n} \right)}{C_k},$$
where $$m,\,n,\,k$$ are positive integers, and $${}^p{C_q} = 0$$ for $$p < q.$$
4
IIT-JEE 1989
Subjective
+5
-0
Prove that
$${C_0} - {2^2}{C_1} + {3^2}{C_2}\,\, - \,..... + {\left( { - 1} \right)^n}{\left( {n + 1} \right)^2}{C_n} = 0,\,\,\,\,n > 2,\,\,$$ where $${C_r} = {}^n{C_r}.$$
JEE Advanced Papers
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12