1
IIT-JEE 1989
MCQ (Single Correct Answer)
+2
-0.5
The general solutions of $$\,\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$$ is
A
$$n\pi + {\pi \over 8}$$
B
$${{n\pi } \over 2} + {\pi \over 8}$$
C
$${\left( { - 1} \right)^n}{{n\pi } \over 2} + {\pi \over 8}\,\,$$
D
$$2n\pi + {\cos ^{ - 1}}{3 \over 2}$$
2
IIT-JEE 1989
MCQ (Single Correct Answer)
+2
-0.5
If the two circles $${(x - 1)^2} + {(y - 3)^2} = {r^2}$$ and $${x^2} + {y^2} - 8x + 2y + 8 = 0$$ intersect in two distinct points, then
A
2 < r < 8
B
r < 2
C
r = 2
D
r > 2
3
IIT-JEE 1989
MCQ (Single Correct Answer)
+2
-0.5
The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle of area 154 sq. units. Then the equation of this circle is
A
$${x^2} + {y^2} + 2x - 2y = 62$$
B
$${x^2} + {y^2} + 2x - 2y = 47$$
C
$${x^2} + {y^2} - 2x + 2y = 47$$
D
$${x^2} + {y^2} - 2x + 2y = 62$$c
4
IIT-JEE 1989
Subjective
+2
-0
If $$\left( {{m_i},{1 \over {{m_i}}}} \right),\,{m_i}\, > \,0,\,i\, = 1,\,2,\,3,\,4$$ are four distinct points on a circle, then show that $${m_1}\,{m_2}\,{m_3}\,{m_4}\, = 1$$
JEE Advanced Papers
EXAM MAP