1
IIT-JEE 1989
MCQ (Single Correct Answer)
+2
-0.5
If the two circles $${(x - 1)^2} + {(y - 3)^2} = {r^2}$$ and $${x^2} + {y^2} - 8x + 2y + 8 = 0$$ intersect in two distinct points, then
A
2 < r < 8
B
r < 2
C
r = 2
D
r > 2
2
IIT-JEE 1989
MCQ (Single Correct Answer)
+2
-0.5
The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle of area 154 sq. units. Then the equation of this circle is
A
$${x^2} + {y^2} + 2x - 2y = 62$$
B
$${x^2} + {y^2} + 2x - 2y = 47$$
C
$${x^2} + {y^2} - 2x + 2y = 47$$
D
$${x^2} + {y^2} - 2x + 2y = 62$$c
3
IIT-JEE 1989
Subjective
+2
-0
If $$\left( {{m_i},{1 \over {{m_i}}}} \right),\,{m_i}\, > \,0,\,i\, = 1,\,2,\,3,\,4$$ are four distinct points on a circle, then show that $${m_1}\,{m_2}\,{m_3}\,{m_4}\, = 1$$
4
IIT-JEE 1989
Subjective
+2
-0
If $$x = \sec \theta - \cos \theta $$ and $$y = {\sec ^n}\theta - {\cos ^n}\theta $$, then show
that $$\left( {{x^2} + 4} \right){\left( {{{dy} \over {dx}}} \right)^2} = {n^2}\left( {{y^2} + 4} \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12