1
IIT-JEE 1989
Subjective
+5
-0
Prove that
$${C_0} - {2^2}{C_1} + {3^2}{C_2}\,\, - \,..... + {\left( { - 1} \right)^n}{\left( {n + 1} \right)^2}{C_n} = 0,\,\,\,\,n > 2,\,\,$$ where $${C_r} = {}^n{C_r}.$$
2
IIT-JEE 1989
Subjective
+5
-0
Let $$ABC$$ be a triangle with $$AB = AC$$. If $$D$$ is the midpoint of $$BC, E$$ is the foot of the perpendicular drawn from $$D$$ to $$AC$$ and $$F$$ the mid-point of $$DE$$, prove that $$AF$$ is perpendicular to $$BE$$.
3
IIT-JEE 1989
True or False
+1
-0
The line x + 3y = 0 is a diameter of the circle $${x^2} + {y^2} - 6x + 2y = 0\,$$.
A
TRUE
B
FALSE
4
IIT-JEE 1989
MCQ (Single Correct Answer)
+2
-0.5
The general solutions of $$\,\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$$ is
A
$$n\pi + {\pi \over 8}$$
B
$${{n\pi } \over 2} + {\pi \over 8}$$
C
$${\left( { - 1} \right)^n}{{n\pi } \over 2} + {\pi \over 8}\,\,$$
D
$$2n\pi + {\cos ^{ - 1}}{3 \over 2}$$
JEE Advanced Papers
EXAM MAP