1
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
The transfer function of a discrete time LTI system is given by
$$H\left( z \right) = {{2 - {3 \over 4}{z^{ - 1}}} \over {1 - {3 \over 4}{z^{ - 1}} + {1 \over 8}{z^{ - 2}}}}$$

Consider the following statements:
S1: The system is stable and causal for $$ROC:\,\,\,\left| z \right| > \,1/2$$
S2: The system is stable but not causal for $$ROC:\,\,\,\left| z \right| < \,1/4$$
S3: The system is neither stable nor causal for $$ROC:\,\,1/4\, < \,\left| z \right| < \,{\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}$$

Which one of the following statements is valid?

A
Both S1 and S2 are true
B
Both S2 and S3 are true
C
Both S1 and S3 are true
D
S1, S2 and S3 are all true
2
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
A continuous time LTI system is described by $${{{d^2}y(t)} \over {d{t^2}}} + 4{{dy(t)} \over {dt}} + 3y(t)\, = 2{{dx(t)} \over {dt}} + 4x(t)$$.

Assuming zero initial conditions, the response y(t) of the above system for the input x(t) = $${e^{ - 2t}}$$ u(t) is given by

A
$$({e^t} - {e^{3t}})\,u(t)$$
B
$$({e^{ - t}} - {e^{ - 3t}})\,u(t)$$
C
$$({e^{ - t}} + {e^{ - 3t}})\,u(t)$$
D
$$({e^t} + {e^{3t}})\,u(t)$$
3
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
Consider the z-transform
X(z)=5$${z^2} + 4{z^{ - 1}} + 3;0 < \left| z \right| < \infty $$.

The inverse z - transform x$$\,\left[ n \right]$$ is

A
$$5\,\delta [n + 2] + 3\,\delta {\rm{\;}}[n]{\mkern 1mu} + 4\delta [n - 1]$$
B
$$5\,\delta [n - 2] + 3\,\delta [n] + 4\,\delta [n + 1]$$
C
$$5\,u[n + 2] + 3\,u[n]{\mkern 1mu} + 4\,u[n - 1]$$
D
$$5\,u[n - 2] + 3\,u[n]{\mkern 1mu} + 4\,u[n + 1]$$
4
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
For an N-point FFT algorithm with N = $${2^m}$$ which one of the following statements is TRUE?
A
It is not possible to construct a signal flow graph with both input and output in normal order.
B
The number of butterflies in the $${m^{th}}$$ stage is N/m.
C
In-place computation requires storage of only 2N node data.
D
Computation of a butterfly requires only one complex multiplication.
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12