1
GATE ECE 2010
+2
-0.6
A function $$n(x)$$ satisfies the differential equation $${{{d^2}n\left( x \right)} \over {d{x^2}}} - {{n\left( x \right)} \over {{L^2}}} = 0$$ where $$L$$ is a constant. The boundary conditions are $$n(0)=k$$ and $$n\left( \propto \right) = 0.$$ The solution to this equation is
A
$$n\left( x \right) = k\,\exp \left( {{{ - x} \over L}} \right)$$
B
$$n\left( x \right) = k\,\exp \left( {{{ - x} \over {\sqrt L }}} \right)$$
C
$$n\left( x \right) = {k^2}\,\exp \left( {{{ - x} \over L}} \right)$$
D
$$n\left( x \right) = {k^2}\,\exp \left( {{{ - x} \over {\sqrt L }}} \right)$$
2
GATE ECE 2010
+1
-0.3
Consider a differential equation $${{dy\left( x \right)} \over {dx}} - y\left( x \right) = x\,\,$$ with initial condition $$y(0)=0.$$ Using Euler's first order method with a step size of $$0.1$$ then the value of $$y$$ $$(0.3)$$ is
A
$$0.01$$
B
$$0.031$$
C
$$0.0631$$
D
$$0.1$$
3
GATE ECE 2010
+1
-0.3
The residues of a complex function $$X\left( z \right) = {{1 - 2z} \over {z\left( {z - 1} \right)\left( {z - 2} \right)}}$$ at it poles
A
$${1 \over 2},\,\, - {1 \over 2},\,1$$
B
$${1 \over 2},\,\, - {1 \over 2},\, - 1$$
C
$${1 \over 2},\,\,1,\,\, - {3 \over 2}$$
D
$${1 \over 2},\,\, - 1,\,\,{3 \over 2}$$
4
GATE ECE 2010
+1
-0.3
In the circuit shown, the device connected to Y5 can have address in the range
A
2000H - 20FFH
B
2D00H - 2DFFH
C
2E00H - 2EFFH
D
FD00H - FDFFH
GATE ECE Papers
2024
2023
2022
2021
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Medical
NEET