1
GATE ECE 2010
+1
-0.3
The transfer function Y(s)/R(s) of the system shown is
A
$$0$$
B
$$\frac1{s+1}$$
C
$$\frac1{s+2}$$
D
$$\frac2{s+3}$$
2
GATE ECE 2010
+1
-0.3
A system with the transfer function $${{Y(s)} \over {X(s)}} = {s \over {s + p}},$$ has an output y(t)=$$\cos \left( {2t - {\pi \over 3}} \right),$$ for input signal x(t)=$$p\cos \left( {2t - {\pi \over 2}} \right).$$ Then the system parameter 'p' is
A
$$\sqrt 3$$
B
$${2 \over {\sqrt 3 }}$$
C
1
D
$${{\sqrt 3 } \over 2}$$
3
GATE ECE 2010
+1
-0.3
For the asymptotic Bode magnitude plot shown below, the system transfer function can be
A
$${{10s + 1} \over {0.1s + 1}}$$
B
$${{100s + 1} \over {0.1s + 1}}$$
C
$${{100s} \over {10s + 1}}$$
D
$${{0.1s + 1} \over {10s + 1}}$$
4
GATE ECE 2010
+2
-0.6
A unity negative feedback closed loop system has a plant with the transfer function $$G(s) = {1 \over {{s^2} + 2s + 2}}$$ and a controller $${G_c}(s)$$ in the feed forward path. For a unit set input, the transfer function of the controller that gives minimum steady sate error is
A
$${G_C}\left( s \right) = {{s + 1} \over {s + 2}}$$
B
$${G_C}\left( s \right) = {{s + 2} \over {s + 1}}$$
C
$${G_C}\left( s \right) = {{\left( {s + 1} \right)\left( {s + 4} \right)} \over {\left( {s + 2} \right)\left( {s + 3} \right)}}$$
D
$${G_C}\left( s \right) = 1 + {2 \over s} + {3_s}$$
GATE ECE Papers
2023
2022
2021
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Joint Entrance Examination