1
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
If the scattering matrix [S] of a two port network is $$$\left[ S \right] = \left[ {\matrix{ {0.2\,\angle \,\,{0^ \circ }} & {0.9\,\,\angle \,\,{{90}^ \circ }} \cr {0.9\,\angle \,\,{{90}^ \circ }} & {0.1\,\angle \,{{90}^ \circ }} \cr } } \right]$$$ then the network is
A
lossless and reciprocal
B
lossless but not reciprocal
C
not lossless but reciprocal
D
neither lossless nor reciprocal
2
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
In the circuit shown, all the transmission line sections are lossless. The Voltage Standing Wave Ration (VSWR) on the 60W line is GATE ECE 2010 Electromagnetics - Transmission Lines Question 21 English
A
1.00
B
1.64
C
2.50
D
3.00
3
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
A plane wave having the electric field component $$${\overrightarrow E _i} = 24\,\,\cos \,\,\left( {3 \times {{10}^8}\,t - \beta \,y} \right){\widehat a_z}\,\,V/m$$$
and traveling in free space is incident normally on a lossless medium with $$\mu = {\mu _0}$$ and $$\varepsilon = 9\,\,{\varepsilon _0},$$ which occupies the region $$y \ge 0.$$ The reflected magnetic field component is given by
A
$${1 \over {10{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
B
$${1 \over {20{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
C
$$ - {1 \over {20{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
D
$$ - {1 \over {10{\mkern 1mu} \pi }}\cos {\mkern 1mu} {\mkern 1mu} \left( {3 \times {{10}^8}{\mkern 1mu} t - y} \right)\hat a{\,_x}{\mkern 1mu} {\mkern 1mu} A/m$$
4
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
If $$\overrightarrow{\mathrm A}\;=\;\mathrm{xy}\;{\widehat{\mathrm a}}_\mathrm x\;+\;\mathrm x^2\;{\widehat{\mathrm a}}_\mathrm y$$ then $$\oint\overrightarrow{\mathrm A}.\overrightarrow{\mathrm d}\mathcal l$$ over the path shown in the figure is GATE ECE 2010 Electromagnetics - Maxwell Equations Question 27 English
A
$$0$$
B
$$\frac2{\sqrt3}$$
C
1
D
$$2\sqrt3$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12