1
GATE ECE 2010
+1
-0.3
For the two-port network shown below, the short-circuit admittance parameter matrix is
A
$$\begin{bmatrix}4&-2\\-2&4\end{bmatrix}S$$
B
$$\begin{bmatrix}1&-0.5\\-0.5&1\end{bmatrix}S$$
C
$$\begin{bmatrix}1&0.5\\0.5&1\end{bmatrix}S$$
D
$$\begin{bmatrix}4&2\\2&4\end{bmatrix}S$$
2
GATE ECE 2010
+2
-0.6
In the circuit shown, the switch S is open for a long time and is closed at t=0. The current i(t) for t ≥ 0+ is
A
i(t) = 0.5 - 0.125e-1000t A
B
i(t) = 1.5 - 0.125e-1000t A
C
i(t) = 0.5 - 0.5e-1000t A
D
i(t) = 0.375e-1000t A
3
GATE ECE 2010
+1
-0.3
The trigonometric Fourier series for the waveform f(t) shown below contains
A
only cosine terms and zero value for the dc component
B
only cosine terms and a positive value for the dc component
C
only cosine terms and a negative value for the dc component
D
only sine terms and a negative for the dc component
4
GATE ECE 2010
+2
-0.6
Given f(t) = $${L^{ - 1}}\left[ {{{3s + 1} \over {{s^3} + 4{s^2} + \left( {K - 3} \right)s}}} \right].$$ If $$\matrix{ {Lim\,f\,\left( t \right) = 1,} \cr {t \to \infty } \cr } \,\,$$ then the value of K is
A
1
B
2
C
3
D
4
GATE ECE Papers
2023
2022
2021
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Joint Entrance Examination