1
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

With usual notation, in a triangle ABC $\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$, then the value of $\cos B$ is equal to

A

$\frac{17}{35}$

B

$\frac{17}{70}$

C

$\frac{19}{35}$

D

$\frac{19}{70}$

2
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $A B C$, with usual notations, the sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are such that they are roots of the equation $x^3-11 x^2+38 x-40=0$ then $\frac{\cos \mathrm{A}}{\mathrm{a}}+\frac{\cos \mathrm{B}}{\mathrm{b}}+\frac{\cos \mathrm{C}}{\mathrm{c}}=$

A
$\frac{9}{16}$
B
$\frac{3}{4}$
C
1
D
$\frac{5}{16}$
3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $A B C$ with usual notations if $\angle A=30^{\circ}$, then the value of $\left(1+\frac{a}{c}+\frac{b}{c}\right)\left(1+\frac{c}{b}-\frac{a}{b}\right)=$

A

$\sqrt{3}-2$

B

$2+\sqrt{5}$

C

$\sqrt{3}+2$

D

$2-\sqrt{5}$

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle PQR with usual notations, $\angle \mathrm{R}=\frac{\pi}{2}$. If $\tan \frac{\mathrm{P}}{2}$ and $\tan \frac{\mathrm{Q}}{2}$ are the roots of the equation $a x^2+b x+c=0(a \neq 0)$, then

A

$\mathrm{a}+\mathrm{b}=\mathrm{c}$

B

$\mathrm{b}+\mathrm{c}=\mathrm{a}$

C

$\mathrm{a}+\mathrm{c}=\mathrm{b}$

D

$\mathrm{b}=\mathrm{c}$

MHT CET Subjects
EXAM MAP