1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, $\frac{\cos \mathrm{B}+\cos \mathrm{C}}{\mathrm{b}+\mathrm{c}}+\frac{\cos \mathrm{A}}{\mathrm{a}}$ has the value

A
$\frac{1}{\mathrm{~b}+\mathrm{c}}$
B
$\frac{1}{\mathrm{~b}}$
C
$\frac{1}{\mathrm{c}}$
D
$\frac{1}{\mathrm{a}}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angles of a triangle are in the ratio $5: 1: 6$, then ratio of the smallest side to the greatest side is

A
$\sqrt{3}+1: 2 \sqrt{2}$
B
$2 \sqrt{2}: \sqrt{3}+1$
C
$2 \sqrt{2}: \sqrt{3}-1$
D
$\sqrt{3}-1: 2 \sqrt{2}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{R}=\frac{\pi}{2}$. If $\tan \left(\frac{\mathrm{P}}{2}\right)$ and $\tan \left(\frac{\mathrm{Q}}{2}\right)$ are the roots of the equation $a x^2+b x+c=0(a \neq 0)$, then

A
$\mathrm{a}+\mathrm{b}=\mathrm{c}$
B
$\mathrm{b}+\mathrm{c}=\mathrm{a}$
C
$\mathrm{a+c=b}$
D
$\mathrm{b}=\mathrm{c}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the sides of a triangle $a, b, c$ are in A.P., then with usual notations, a $\cos ^2 \frac{\mathrm{C}}{2}+\mathrm{c} \cos ^2 \frac{\mathrm{~A}}{2}$ is

A
$\frac{3 \mathrm{a}}{2}$
B
  $\frac{3 \mathrm{c}}{2}$
C
$\frac{3 b}{2}$
D
$\frac{\mathrm{a}+\mathrm{c}}{2}$
MHT CET Subjects
EXAM MAP