1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

With usual notations, the perimeter of a triangle ABC is 6 times the arithmetic mean of sine of its angles. If $\mathrm{a}=1$, then $\angle \mathrm{A}=$

A
$\frac{\pi}{6}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{2}$
D
$\frac{2 \pi}{3}$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, $\tan \left(\frac{\mathrm{A}}{2}\right)=\frac{5}{6}, \tan \left(\frac{\mathrm{C}}{2}\right)=\frac{2}{5}$, then

A
$\mathrm{a}, \mathrm{c}, \mathrm{b}$ are in A.P.
B
$\mathrm{b}, \mathrm{a}, \mathrm{c}$ are in A.P.
C
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P.
D
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P.
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

With usual notation, in triangle ABC , $\mathrm{m} \angle \mathrm{A}=30^{\circ}$ then the value of $\left(1+\frac{\mathrm{a}}{\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{c}}\right)\left(1+\frac{\mathrm{c}}{\mathrm{b}}-\frac{\mathrm{a}}{\mathrm{b}}\right)$ is equal to

A
$\frac{2+\sqrt{3}}{2}$
B
$2+\sqrt{3}$
C
$\frac{1+\sqrt{3}}{2}$
D
$1+\sqrt{3}$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle A B C$, with usual notations, $a \cos B=b \cos A, a \cos C \neq c \cos A$ then $\mathrm{A}(\triangle \mathrm{ABC})$ $\qquad$ sq. units.

A
$\quad \frac{c}{2} \sqrt{4 a^2-b^2}$
B
$\frac{c}{4} \sqrt{4 a^2-c^2}$
C
$\quad \frac{b}{2} \sqrt{4 b^2-c^2}$
D
$\frac{b}{4} \sqrt{4 b^2-c^2}$
MHT CET Subjects
EXAM MAP