1
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a $$\triangle A B C$$ if $$2 \cos C=\sin B \cdot \operatorname{cosec} A$$, then

A
$$a=c$$
B
$$b=c$$
C
$$a=b=c$$
D
$$a=b$$
2
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $$A B C$$ with usual notations, if $$\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$$, then area of triangle $$A B C$$ with $$a=\sqrt{6}$$ is

A
$$\frac{2}{\sqrt{3}}$$ sq units
B
$$\frac{3 \sqrt{3}}{2}$$ sq units
C
$$\frac{5 \sqrt{3}}{2}$$ sq units
D
$$\frac{\sqrt{3}}{2}$$ sq units
3
MHT CET 2020 16th October Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $$A B C$$, if $$\frac{\sin A-\sin C}{\cos C-\cos A}=\cot B$$, then $$A, B, C$$, are in

A
Geometric progression
B
Arithmetic progression
C
Arithmetic-Geometric progression
D
Harmonic progression
4
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle A B C$, with the usual notations, if $\left(\tan \frac{A}{2}\right)\left(\tan \frac{B}{2}\right)=\frac{3}{4}$ then $a+b=\ldots \ldots$

A
4c
B
2c
C
7c
D
3c
MHT CET Subjects
EXAM MAP