1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In $\triangle A B C$, with usual notations, if $\mathrm{a}^4+\mathrm{b}^4+\mathrm{c}^4-2 \mathrm{a}^2 \mathrm{c}^2-2 \mathrm{c}^2 \mathrm{~b}^2=0$, then $\angle \mathrm{C}=\ldots$

A
$135^{\circ}$
B
$120^{\circ}$
C
$150^{\circ}$
D
$125^{\circ}$
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC with usual notations if, $\tan \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)=x \cot \frac{\mathrm{~A}}{2}$, then $x=$

A
$\frac{c-a}{c+a}$
B
$\frac{a-b}{a+b}$
C
$\frac{\mathrm{b}-\mathrm{c}}{\mathrm{b}+\mathrm{c}}$
D
$\frac{a+b}{a-b}$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

With usual notations, the perimeter of a triangle ABC is 6 times the arithmetic mean of sine of its angles. If $\mathrm{a}=1$, then $\angle \mathrm{A}=$

A
$\frac{\pi}{6}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{2}$
D
$\frac{2 \pi}{3}$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, $\tan \left(\frac{\mathrm{A}}{2}\right)=\frac{5}{6}, \tan \left(\frac{\mathrm{C}}{2}\right)=\frac{2}{5}$, then

A
$\mathrm{a}, \mathrm{c}, \mathrm{b}$ are in A.P.
B
$\mathrm{b}, \mathrm{a}, \mathrm{c}$ are in A.P.
C
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P.
D
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P.
MHT CET Subjects
EXAM MAP