1
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $A B C$, with usual notations, if $a=5$, $\mathrm{b}=7 \sin \mathrm{~A}=\frac{3}{4}$, then total number of triangles possible are

A
1
B
0
C
2
D
5
2
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $A B C$, with usual notations, $\cot \left(\frac{A+B}{2}\right) \cdot \tan \left(\frac{A-B}{2}\right)=$

A
$\frac{a+b}{a-b}$
B
$\frac{a-b}{a+b}$
C
$\frac{a}{a+b}$
D
$\frac{b}{a-b}$
3
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, $(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{a}+\mathrm{b}-\mathrm{c})=3 \mathrm{ab}$, then $\angle \mathrm{C}=$

A

$\frac{\pi}{2}$

B

$\frac{\pi}{4}$

C

$\frac{\pi}{3}$

D

$\frac{\pi}{6}$

4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

With usual notations in $\triangle \mathrm{ABC}$, if $\angle \mathrm{B}=\frac{\pi}{2}$, and $\tan \frac{\mathrm{A}}{2}, \tan \frac{\mathrm{C}}{2}$ are roots of equation $\mathrm{p} x^2+\mathrm{qx}+\mathrm{r}=0$, $\mathrm{p} \neq 0$, then

A
$\mathrm{p}+\mathrm{q}=\mathrm{r}$
B
$\mathrm{r}+\mathrm{p}=\mathrm{q}$
C
$\mathrm{r}=\mathrm{p}$
D
$\mathrm{p}=\mathrm{q}$
MHT CET Subjects
EXAM MAP