1
MHT CET 2021 22th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

The sum of three numbers is 6. Thrice the third number when added to the first number gives 7. On adding three times first number to the sum of second and third number we get 12. The product of these numbers is

A
20
B
3
C
$$\frac{20}{3}$$
D
$$\frac{5}{3}$$
2
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$$, then $$\operatorname{adj} A=$$

A
$$\left[\begin{array}{ccc}-\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$$
B
$$\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$$
C
$$\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$$
D
$$\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$$
3
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]$$ and $$A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & 1 \\ -8 & 6 & 2 c \\ 5 & -3 & 1\end{array}\right]$$, then values of a and c are respectively

A
$$\frac{1}{2}, \frac{1}{2}$$
B
$$-1,1$$
C
$$2, \frac{-1}{2}$$
D
$$1,-1$$
4
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$$, then $$A^{-1}=$$

A
$$\left(\frac{1}{2}\right)\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 2 & 1 \\ 4 & 2 & 3\end{array}\right]$$
B
$$\left[\begin{array}{ccc}\frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & \frac{-3}{2} & \frac{1}{2}\end{array}\right]$$
C
$$\left[\begin{array}{ccc}\frac{1}{2} & -1 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1\end{array}\right]$$
D
$$\left(\frac{1}{2}\right)\left[\begin{array}{ccc}1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1\end{array}\right]$$
MHT CET Subjects
EXAM MAP