1
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The shortest distance between the line $y-x=1$ and the curve $x=y^2$ is

A
$\frac{3 \sqrt{2}}{8}$
B
$\frac{2 \sqrt{3}}{8}$
C
$\frac{3 \sqrt{2}}{5}$
D
$\frac{\sqrt{3}}{4}$
2
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the curves $y^2=6 x$ and $9 x^2+b y^2=16$ intersect each other at right angles, then the value of $b$ is

A
4
B
$\frac{7}{2}$
C
6
D
$\frac{9}{2}$
3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The position of a point in time $t$ is given by $x=\mathrm{a}+\mathrm{bt}-\mathrm{ct}^2, y=\mathrm{at}+\mathrm{bt}^2$. It's resultant acceleration at time $t$ in seconds is given by

A
$\mathrm{b}-\mathrm{c}$ unit $/$ seconds $^2$
B
$\mathrm{b}+\mathrm{c}$ unit/seconds ${ }^2$
C
$2 \mathrm{~b}-2 \mathrm{c}$ unit/seconds ${ }^2$
D
$2 \sqrt{b^2+c^2}$ unit/seconds ${ }^2$
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of tangent to the curve $y=\cos (x+y)$ where $-2 \pi \leq x \leq 2 \pi$ and which is parallel to the line $x+2 y=0$, is

A
$2 x+4 y+\pi=0$
B
$2 x+4 y-\pi=0$
C
$2 x+4 y-3 \pi=0$
D
$2 x-4 y+3 \pi=0$
MHT CET Subjects
EXAM MAP