The points $$A(-a,-b), B(0,0), C(a, b)$$ and $$D\left(a^2, a b\right)$$ are
The cosine of the angle included between the lines $$\mathbf{r}=(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$$ and $$\mathbf{r}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\mu(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-6 \hat{\mathbf{k}})$$ where $$\lambda, \mu \in R$$ is.
If the foot of perpendicular drawn from the origin to the plane is $$(3,2,1)$$, then the equation of plane is
The angle between the line $$r =(\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})+\lambda(3 \hat{\mathbf{i}}+\hat{\mathbf{j}})$$ and the plane $$\mathbf{r} \cdot(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})=8$$ is