1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane through the point $(2,-1,-3)$ and parallel to the lines $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}$ is

A
$8 x+y-13 z+27=0$
B
$2 x+y+z=0$
C
$3 x-y-z-10=0$
D
$8 x+14 y+13 z+37=0$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Equation of the plane, through the points $(-1,2,-2)$ and $(-1,3,2)$ and perpendicular to $y \mathrm{z}$ - plane, is

A
$4 y+z=10$
B
$4 y-z+10=0$
C
$4 y-z=10$
D
$4 y+z+10=0$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-1}{4}$ and $\frac{x-3}{-1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then k is equal to

A
$\frac{-5}{6}$
B
$\frac{5}{6}$
C
$\frac{6}{5}$
D
$\frac{-6}{5}$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the line, $\frac{x-3}{2}=\frac{y+2}{1}=\frac{z+4}{3}$ lies in the plane, $\ell x+m y-z=9$, then $\ell^2+m^2$ is equal to

A
$\frac{124}{49}$
B
$\frac{123}{49}$
C
$\frac{121}{49}$
D
$\frac{122}{49}$
MHT CET Subjects
EXAM MAP