1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let A and B be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that A or B occurs is $\frac{1}{2}$, then the probability of both of them occur together is

A
0.1
B
0.2
C
0.01
D
0.02
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $X$ has the following probability distribution

$\mathrm{X:}$ 1 2 3 4 5
$\mathrm{P(X):}$ $\mathrm{k^2}$ $\mathrm{2k}$ $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{5k^2}$

Then $\mathrm{P(X > 2)}$ is equal to

A
$\frac{7}{12}$
B
$\frac{23}{36}$
C
$\frac{1}{36}$
D
$\frac{1}{6}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A multiple choice examination has 5 questions. Each question has three alternative answers of which exactly one is correct. The probability, that a student will get 4 or more correct answers just by guessing, is

A
$\frac{10}{3^5}$
B
$\frac{17}{3^5}$
C
$\frac{13}{3^5}$
D
$\frac{11}{3^5}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let a random variable X have a Binomial distribution with mean 8 and variance 4 . If $\mathrm{P}(x \leqslant 2)=\frac{\mathrm{k}}{2^{16}}$, then k is equal to

A
17
B
121
C
1
D
137
MHT CET Subjects
EXAM MAP