1
MHT CET 2021 20th September Evening Shift
+2
-0

$$\int \sec ^4 x \cdot \tan ^4 x d x=\frac{\tan ^m x}{m}+\frac{\tan ^n x}{n}+c$$ (where c is constant of integration), then m + n =

A
8
B
12
C
10
D
16
2
MHT CET 2021 20th September Evening Shift
+2
-0

$$\int \operatorname{cosec}(x-a) \operatorname{cosec} x d x=$$

A
$$\operatorname{cosec} a \cdot \log [\sin (x-a) \operatorname{cosec} x]+c$$
B
$$\operatorname{cosec} a \log [\sin (x-a) \sin x]+c$$
C
$$\sin a \cdot \log [\sin (x-a) \sin x]+c$$
D
$$\operatorname{cosec} a \cdot \log [\operatorname{cosec}(x-a) \sin x]+c$$
3
MHT CET 2021 20th September Evening Shift
+2
-0

$$\int \frac{2 x^2-1}{x^4-x^2-20} d x=$$

A
$$\frac{1}{\sqrt{5}} \log \left|\frac{x+\sqrt{5}}{x-\sqrt{5}}\right|+\tan ^{-1}\left(\frac{x}{2}\right)+c$$
B
$$\frac{1}{2 \sqrt{5}} \log \left|\frac{x+\sqrt{5}}{x-\sqrt{5}}\right|+\tan ^{-1}\left(\frac{x}{2}\right)+c$$
C
$$\frac{1}{2 \sqrt{5}} \log \left|\frac{x-\sqrt{5}}{x+\sqrt{5}}\right|+\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+c$$
D
$$\frac{1}{2} \log \left|\frac{x-\sqrt{5}}{x+\sqrt{5}}\right|+\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+c$$
4
MHT CET 2021 20th September Morning Shift
+2
-0

$$\int \tan ^{-1}(\sec x+\tan x) d x=$$

A
$$\frac{\pi x}{4}+\frac{x^2}{4}+c$$
B
$$\sin x \cos x+c$$
C
$$\frac{\pi x}{2}+\frac{x^2}{2}+c$$
D
$$\sin x+\cos x+c$$
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination