1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=\frac{\sin ^2 \pi x}{1+\pi^x}$, then $\int(f(x)+f(-x)) d x$ is equal to

A
$\frac{x}{2}-\frac{\sin \pi x}{2 \pi}+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{1}{2} x-\frac{\sin 2 \pi x}{4 \pi}+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{x}{2}-\frac{\cos \pi x}{2 \pi}+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{1}{1+\pi^x}+\frac{\cos ^2 \pi x}{2 \pi}+\mathrm{c}$, (where c is a constant of integration)
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\mathrm{d} x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+\mathrm{k}$ where k is a constant of integration, then $A+B+C$ equals

A
$\frac{27}{10}$
B
$\frac{16}{5}$
C
$\frac{27}{5}$
D
$\frac{21}{5}$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integral $\int \frac{2 x^3-1}{x^4+x} \mathrm{~d} x$ is equal to

A
$\log \frac{\left|x^3+1\right|}{x^2}+c$, (where c is a constant of integration)
B
$\frac{1}{2} \log \frac{\left(x^3+1\right)^2}{\left|x^3\right|}+\mathrm{c}$, (where c is a constant of integration)
C
$\quad \log \left|\frac{x^3+1}{x}\right|+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{1}{2} \log \frac{\left|x^3+1\right|}{x^2}+\mathrm{c}$, (where c is a constant of integration)
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\log \left(t+\sqrt{1+t^2}\right)}{\sqrt{1+t^2}} d t=\frac{1}{2}(g(t))^2+c$ where c is a constant of integration, then $\mathrm{g}(2)$ is equal to

A
$2 \log (2+\sqrt{5})$
B
$\log (2+\sqrt{5})$
C
$\frac{1}{\sqrt{5}} \log (2+\sqrt{5})$
D
$\frac{1}{2} \log (2+\sqrt{5})$
MHT CET Subjects
EXAM MAP