1
MHT CET 2021 23th September Morning Shift
+2
-0

If $$\int \frac{\sin x}{\sin (x-\alpha)} d x=A x+B \log \sin (x-\alpha)+c$$, then the value of A and B are respectively (where $$\mathrm{c}$$ is a constant of integration)

A
$$\cos \alpha, \sin \alpha$$
B
$$\sin \alpha, \cos \alpha$$
C
$$-\cos \alpha, \sin \alpha$$
D
$$-\sin \alpha, \cos \alpha$$
2
MHT CET 2021 23th September Morning Shift
+2
-0

$$\int \frac{10^{\frac{x}{2}}}{\sqrt{10^{-x}-10^x}} d x=$$

A
$$2 \sqrt{10^{-x}+10^x}+c$$
B
$$\frac{2}{2 \sqrt{10^{-x}+10^x}}+c$$
C
$$\frac{1}{\log 10} \sin ^{-1}\left(10^{\mathrm{x}}\right)+\mathrm{c}$$
D
$$\frac{1}{\log 10} \cos ^{-1}\left(10^x\right)+c$$
3
MHT CET 2021 23th September Morning Shift
+2
-0

$$\int e^{\left(e^x+x\right)} d x=$$

A
$$e^x+x+c$$
B
$$e^{\left(e^x\right)} \cdot x+c$$
C
$$e^{\left(e^x\right)}+c$$
D
$$e^{\left(e^x\right)}\left(e^x-1\right)+c$$
4
MHT CET 2021 22th September Evening Shift
+2
-0

$$\int \frac{\tan ^4 \sqrt{x} \cdot \sec ^2 \sqrt{x}}{\sqrt{x}} d x=$$

A
$$\frac{-5}{2}[\tan \sqrt{x}]^5+c$$
B
$$[\tan \sqrt{\mathrm{x}}]^5+c$$
C
$$\frac{2}{5}[\tan \sqrt{x}]^5+c$$
D
$$\frac{5}{2}[\tan \sqrt{x}]^5+c$$
EXAM MAP
Medical
NEET