1
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\int \frac{1+x^2}{1+x^4} d x=\frac{1}{\sqrt{2}} \tan ^{-1}\left[\frac{f(x)}{\sqrt{2}}\right]+c$$, then $$f(x)=$$

A
$$x+\frac{1}{x^2}$$
B
$$x-\frac{1}{x^2}$$
C
$$x+\frac{2}{x}$$
D
$$x-\frac{1}{x}$$
2
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{x+\sin x}{1+\cos x} d x=$$

A
$$x \tan \left(\frac{x}{2}\right)+c$$
B
$$\log (x+\sin x)+c$$
C
$$\cot \left(\frac{x}{2}\right)+c$$
D
$$\log (1+\cos x)+c$$
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \sin ^{-1} x d x=$$

A
$x \sin ^{-1} x-\sqrt{1+x^2}+C$
B
$x \sin ^{-1} x-\sqrt{1-x^2}+C$
C
$x \sin ^{-1} x+\sqrt{1-x^2}+C$
D
$x \sin ^{-1} x+\sqrt{1+x^2}+C$
4
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \log x \cdot(\log x+2) d x=$$

A
$x(\log x)^2+c$
B
$x \log x+c$
C
$e^x(\log x)^2+c$
D
$(\log x)^2+c$
MHT CET Subjects
EXAM MAP