1
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \mathrm{f}(x) \mathrm{d} x=\psi(x)$, then $\int x^5 \mathrm{f}\left(x^3\right) \mathrm{d} x$ is equal to

A
$\frac{1}{3} x^3 \psi\left(x^3\right)-3 \int x^3 \psi\left(x^3\right) \mathrm{d} x+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{1}{3}\left(x^3 \psi\left(x^3\right)-\int x^3 \psi\left(x^3\right) \mathrm{d} x\right)+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{1}{3} x^3 \psi\left(x^3\right)-\int x^2 \psi\left(x^3\right) \mathrm{d} x+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{1}{3}\left(x^3 \psi\left(x^3\right)-\int x^2 \psi\left(x^3\right) \mathrm{d} x\right)+\mathrm{c}$, (where c is a constant of integration)
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{d x}{\sqrt[3]{\sin ^{11} x \cos x}}=-\left(\frac{3}{8} f(x)+\frac{3}{2} g(x)\right)+c$ then

A
$\mathrm{f}(x)=\tan ^{\frac{-8}{3}} x, \mathrm{~g}(x)=\tan ^{\frac{-2}{3}} x$, (where c is a constant of integration)
B
$\mathrm{f}(x)=\tan ^{\frac{8}{3}} x, \mathrm{~g}(x)=\tan ^{\frac{-2}{3}} x$, (where c is a constant of integration)
C
$\mathrm{f}(x)=\tan ^{\frac{-8}{3}} x, \mathrm{~g}(x)=\tan ^{\frac{2}{3}} x$, (where c is a constant of integration)
D
$\mathrm{f}(x)=\tan ^{\frac{8}{3}} x, \mathrm{~g}(x)=\tan ^{\frac{2}{3}} x$, (where c is a constant of integration)
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{x^4+x^2+1}{x^2-x+1} d x$ is equal to

A
$\frac{x^3}{3}-\frac{x^2}{2}+x+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{x^3}{3}+\frac{x^2}{2}+x+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{x^3}{3}-\frac{x^2}{2}-x+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{x^3}{3}+\frac{x^2}{2}-x+\mathrm{c}$, ( where c is a constant of integration)
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $I=\int \frac{(x-1) \mathrm{e}^x}{(x+1)^3} \mathrm{dx}$ is

A
$\frac{-\mathrm{e}^x}{(x+1)^2}+C$, (where $C$ is a constant of integration)
B
$\frac{-x \mathrm{e}^x}{(x+1)^2}+\mathrm{C}$, (where C is a constant of integration)
C
$\frac{x \mathrm{e}^x}{(x+1)^2}+C$, (where C is a constant of integration)
D
$\frac{\mathrm{e}^x}{(x+1)^2}+\mathrm{C}$, (where C is a constant of integration)
MHT CET Subjects
EXAM MAP