1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{\mathrm{d} x}{\sqrt{\mathrm{e}^x-1}}=2 \tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$ where $x>0$ and c is a constant of integration, then $\mathrm{f}(x)$ is

A
$\mathrm{e}^x-1$
B
$\sqrt{\mathrm{e}^x-1}$
C
$\mathrm{e}^x+1$
D
$\sqrt{\mathrm{e}^x+1}$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\mathrm{d} x}{x^2\left(x^4+1\right)^{\frac{3}{4}}}$ is

A
$\left(\frac{-x^4+1}{x^4}\right)^{\frac{1}{4}}+c$, where $c$ is constant of integration.
B
$\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$, where c is constant of integration.
C
$-\left(x^4+1\right)^{\frac{1}{4}}+\mathrm{c}$, where c is constant of integration.
D
$-\left(\frac{x^4+1}{x^4}\right)^{\frac{1}{4}}+c$, where $c$ is constant of integration.
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) \mathrm{d} x=$$

A
$2 x \tan ^{-1} x-\log \left(1+x^2\right)+\mathrm{c}$, where c is a constant of integration.
B
$2\left(x \tan ^{-1} x-\log \left(1+x^2\right)\right)+\mathrm{c}$, where c is a constant of integration.
C
$x \tan ^{-1} x+\log \left(1+x^2\right)+\mathrm{c}$, where c is a constant of integration.
D
$2\left(x \tan ^{-1} x+\log \left(1+x^2\right)\right)+\mathrm{c}$, where c is a constant of integration.
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If, $\int \frac{d \theta}{\cos ^2 \theta(\tan 2 \theta+\sec 2 \theta)}=\lambda \tan \theta+2 \log _{\mathrm{e}}|\mathrm{f}(\theta)|+\mathrm{c}$ (where c is a constant of integration), then the ordered pair $(\lambda,|f(\theta)|)$ is equal to

A
$(1,|1+\tan \theta|)$
B
$(1,1-1-\tan \theta \mid)$
C
$(-1,|1+\tan \theta|)$
D
$(-1,|1-\tan \theta|)$
MHT CET Subjects
EXAM MAP