1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\operatorname{cosec} x d x}{\cos ^2\left(1+\log \tan \frac{x}{2}\right)}=$$

A
$\tan \left(1+\log \tan \frac{x}{2}\right)+\mathrm{c}$, where c is a constant of integration.
B
$\frac{1}{2} \tan \left(1+\log \tan \frac{x}{2}\right)+\mathrm{c}$, where c is a constant of integration.
C
$2 \tan \left(1+\log \tan \frac{x}{2}\right)+\mathrm{c}$, where c is a constant of integration.
D
$\frac{1}{4} \tan \left(1+\log \tan \frac{x}{2}\right)+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \sin \sqrt{x} \mathrm{dx}$ is equal to

A
$\sin \sqrt{x}-2 \sqrt{x} \cos \sqrt{x}+c$, where $c$ is a constant of integration.
B
$2 \cos \sqrt{x}-2 \sqrt{x} \sin \sqrt{x}+\mathrm{c}$, where c is a constant of integration.
C
$\cos \sqrt{x}-2 \sqrt{x} \sin \sqrt{x}+c$, where $c$ is a constant of integration.
D
$2 \sin \sqrt{x}-2 \sqrt{x} \cos \sqrt{x}+c$, where $c$ is a constant of integration.
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}\left(\frac{x-4}{x-2}\right)=2 x+1, x \in \mathbb{R}-\{1,-2\}$, then $\int \mathrm{f}(x) \mathrm{d} x$ is equal to

A
$5 x-4 \log (x-1)+\mathrm{c}$, where c is constant of integration.
B
$x-4 \log (x-1)+c$, where $c$ is constant of integration.
C
$5 x+4 \log (x-1)+\mathrm{c}$, where c is constant of integration.
D
$5 x+\log (x-1)+\mathrm{c}$, where c is constant of integration.
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \mathrm{e}^x\left(\frac{1-\sin x}{1-\cos x}\right) \mathrm{dx}$ is equal to

A
$-\mathrm{e}^x \cot \frac{x}{2}+\mathrm{c}$,(where c is a constant of integration)
B
$\mathrm{e}^x \cot \frac{x}{2}+\mathrm{c}$, (where c is a constant of integration)
C
$\mathrm{e}^x \operatorname{cosec} \frac{x}{2}+\mathrm{c}$,(where c is a constant of integration)
D
$-\mathrm{e}^x \operatorname{cosec} \frac{x}{2}+\mathrm{c}$, (where c is a constant of integration)
MHT CET Subjects
EXAM MAP