1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\mathrm{d} x}{\cos ^3 x \sqrt{2 \sin 2 x}}=(\tan x)^A+C(\tan x)^B+K$, where K is a constant of integration, then the value of $5(A+B+C)$ is equal to

A
25
B
14
C
16
D
20
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{2 x^2-1}{\left(x^2+4\right)\left(x^2-3\right)} d x=$$

A
$\frac{9}{14} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{14 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
B
$\frac{9}{7} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{7 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+c$, (where c is constant of integration)
C
$\frac{9}{7} \tan ^{-1}\left(\frac{x}{2}\right)-\frac{5}{7 \sqrt{3}} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
D
$\frac{9}{14} \tan ^{-1}\left(\frac{x}{2}\right)+\frac{5}{7} \log \left(\frac{x-\sqrt{3}}{x+\sqrt{3}}\right)+\mathrm{c}$, (where c is constant of integration)
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\quad \int(2 x+4) \sqrt{x-1} d x=a(x-1)^{5 / 2}+b(x-1)^{3 / 2}+c$ where $c$ is a constant of integration, then the value of $(2 a+b)$ is

A
$\frac{20}{5}$
B
$\frac{28}{5}$
C
$\frac{48}{5}$
D
$\frac{16}{5}$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{(x-1) \mathrm{e}^x}{(x+1)^3} \mathrm{~d} x$ is equal to

A
$\frac{\mathrm{e}^x}{(x+1)}+\mathrm{c}$, (where c is constant of integration)
B
$\frac{\mathrm{e}^{\mathrm{x}}}{(x+1)^2}+\mathrm{c}$, (where c is constant of integration)
C
$\frac{-\mathrm{e}^x}{(x+1)}+\mathrm{c}$, (where c is constant of integration)
D
$\frac{-\mathrm{e}^x}{(x+1)^2}+\mathrm{c}$, (where c is constant of integration)
MHT CET Subjects
EXAM MAP