1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\quad \int(2 x+4) \sqrt{x-1} \mathrm{~d} x=\mathrm{a}(x-1)^{\frac{5}{2}}+\mathrm{b}(x-1)^{\frac{3}{2}}+\mathrm{c}$, (where c is a constant of integration), then the value of $a+b$ is

A
$\frac{46}{5}$
B
$\frac{16}{15}$
C
$\frac{24}{5}$
D
$\frac{13}{15}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{\sqrt{x}}{x+1} d x=$$

A
$\left(2 \sqrt{x}-\tan ^{-1} \sqrt{x}\right)+\mathrm{c}$, where c is a constant of integration.
B
$2\left(\sqrt{x}-\tan ^{-1} \sqrt{x}\right)+\mathrm{c}$, where c is a constant of integration.
C
$\left(2 \sqrt{x}+\tan ^{-1} \sqrt{x}\right)+\mathrm{c}$, where c is a constant of integration.
D
$2\left(\sqrt{x}+\tan ^{-1} \sqrt{x}\right)+\mathrm{c}$, where c is a constant of integration.
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{1+\sin (\log x)}{1+\cos (\log x)} d x=$$

A
$x^2 \tan \left(\frac{\log x}{2}\right)+c$, where $c$ is a constant of integration.
B
$x \tan \left(\log \left(\frac{x}{2}\right)\right)+\mathrm{c}$, where c is a constant of integration.
C
$x^3 \log \left(\frac{\tan x}{2}\right)+\mathrm{c}$, where c is a constant of integration.
D
$x \cdot \tan \left(\frac{\log x}{2}\right)+\mathrm{c}$, where c is a constant of integration.
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{dx}$ is equal to

A
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)+\frac{x}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
B
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)+\frac{\mathrm{e}^x}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
C
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)+\frac{1}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
D
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)-\frac{x}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
MHT CET Subjects
EXAM MAP