1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

For $\mathrm{k}=1,2,3$ the box $\mathrm{B}_{\mathrm{k}}$ contains k red balls and $(k+1)$ white balls. Let $P\left(B_1\right)=\frac{1}{2}, P\left(B_2\right)=\frac{1}{3}$ and $\mathrm{P}\left(\mathrm{B}_3\right)=\frac{1}{6} . \mathrm{A}$ box is selected at random and a ball is drawn from it. If a red ball is drawn from it, then the probability that it comes from box $\mathrm{B}_2$ is

A
$\frac{35}{78}$
B
$\frac{14}{39}$
C
$\frac{10}{13}$
D
$\frac{12}{13}$
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $X$ takes the values $0,1,2,3$, $\qquad$ with probability

$\mathrm{P}(\mathrm{X}=x)=\mathrm{k}(x+1)\left(\frac{1}{5}\right)^x$, where k is a constant.

Then $\mathrm{P}(\mathrm{X}=0)$ is

A
$\frac{16}{25}$
B
$\frac{7}{25}$
C
$\frac{19}{25}$
D
$\frac{18}{25}$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A fair coin is tossed 99 times. If X is the number of times head occur then $\mathrm{P}[\mathrm{X}=\mathrm{r}]$ is maximum when $\mathrm{r}=$

A
48
B
49
C
51
D
52
4
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If X is a binomial variable with range $\{0,1,2,3,4\}$ and $\mathrm{P}(\mathrm{X}=3)=3 \mathrm{P}(\mathrm{X}=4)$ then the parameter ' $p$ ' of the binomial distribution is

A
$\frac{1}{4}$
B
$\frac{3}{4}$
C
$\frac{1}{3}$
D
$\frac{2}{5}$
MHT CET Subjects
EXAM MAP