1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For an entry to a certain course, a candidate is given twenty problems to solve. If the probability that the candidate can solve any problem is $\frac{3}{7}$, then the probability that he is unable to solve at most two problem is

A
$\frac{256}{49}\left(\frac{4}{7}\right)^{18}$
B
$\frac{1966}{49}\left(\frac{4}{7}\right)^{18}$
C
$\frac{1710}{49}\left(\frac{4}{7}\right)^{18}$
D
$\frac{1726}{49}\left(\frac{4}{7}\right)^{18}$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable has the following probability distribution

$\mathrm{X:}$ 0 1 2 3 4 5 6 7
$\mathrm{P}(x):$ 0 $\mathrm{2p}$ $\mathrm{2p}$ $\mathrm{3p}$ $\mathrm{p^2}$ $\mathrm{2p^2}$ $\mathrm{7p^2}$ $\mathrm{2p}$

Then the value of p is

A
$\frac{1}{10}$
B
$\frac{1}{30}$
C
$\frac{1}{100}$
D
$\frac{3}{20}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let A and B be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that A or B occurs is $\frac{1}{2}$, then the probability of both of them occur together is

A
0.1
B
0.2
C
0.01
D
0.02
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $X$ has the following probability distribution

$\mathrm{X:}$ 1 2 3 4 5
$\mathrm{P(X):}$ $\mathrm{k^2}$ $\mathrm{2k}$ $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{5k^2}$

Then $\mathrm{P(X > 2)}$ is equal to

A
$\frac{7}{12}$
B
$\frac{23}{36}$
C
$\frac{1}{36}$
D
$\frac{1}{6}$
MHT CET Subjects
EXAM MAP