1
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A random variable X has following p.d.f. $\mathrm{f}(x)=\mathrm{kx}(1-x), 0 \leqslant x \leqslant 1 \quad$ and $\quad \mathrm{P}(x>\mathrm{a})=\frac{20}{27}$, then $\mathrm{a}=$

A
$\frac{1}{3}$
B
$\frac{2}{3}$
C
$\frac{1}{2}$
D
$\frac{1}{4}$
2
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If A and B are independent events such that $\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)=\frac{3}{25}$ and $\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}\right)=\frac{8}{25}$, then $P(A)=$

A
$\frac{3}{8}$
B
4
C
$\frac{1}{5}$
D
$\frac{2}{5}$
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A fair coin is tossed 100 times. The chance of getting a head even number of times is

A
$\frac{1}{8}$
B
$\frac{3}{8}$
C
$\frac{1}{2}$
D
$\frac{3}{4}$
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a game a man wins $Rs \,\, 40$ if he gets 5 or 6 on a throw of a fair die and loses ₹ 20 for getting any other number on the die. If he decides to throw the die either till he gets a five or six or to a maximum of three throws, then his expected gain/loss (in rupees) is

A
-10
B
10
C
0
D
1
MHT CET Subjects
EXAM MAP