1
GATE EE 2018
Numerical
+1
-0.33
The positive, negative and zero sequence impedances of a 125 MVA, three-phase, 15.5 kV, star-grounded, 50 Hz generator are 𝑗0.1 pu, j0.05 pu and j0.01 pu respectively on the machine rating base. The machine is unloaded and working at the rated terminal voltage. If the grounding impedance of the generator is j0.01 pu, then the magnitude of fault current for a b-phase to ground fault (in kA) is __________ (up to 2 decimal places).
2
GATE EE 2014 Set 3
+1
-0.3
For a fully transposed transmission line
A
Positive, negative and zero sequence impedances are equal.
B
Positive and negative sequence impedances are equal
C
Zero and positive sequence impedances are equal
D
Negative and zero sequence impedances are equal.
3
GATE EE 2014 Set 2
Numerical
+1
-0
A three phase star-connected load is drawing power at a voltage of 0.9 pu and 0.8 power factor lagging. The three phase base power and base current are 100 MVA and 437.38 A respectively. The line-to-line load voltage in kV is __________.
4
GATE EE 2014 Set 1
+1
-0.3
Three phase to ground fault takes place at locations $${F_1}$$ and $${F_2}$$ in the system shown in the figure.

If the fault takes place at location $${F_1}$$, then the voltage and the current at bus A are $${V_F1}$$ and $${{\rm I}_{F1}}$$ respectively. If the fault takes place at location $${F_2}$$, then the voltage and the current at bus A are $${V_{F2}}$$ and $${{\rm I}_{F2}}$$ respectively.

The correct statement about voltages and currents during faults at $${F_1}$$ and $${F_2}$$ is

A
$${V_{F1}}$$ leads $${{\rm I}_{F1}}$$ and $${V_{F2}}$$ leads $${{\rm I}_{F2}}$$
B
$${V_{F1}}$$ leads $${{\rm I}_{F1}}$$ and $${V_{F2}}$$ lags $${{\rm I}_{F2}}$$
C
$${V_{F1}}$$ lags $${{\rm I}_{F1}}$$ and $${V_{F2}}$$ leads $${{\rm I}_{F2}}$$
D
$${V_{F1}}$$ $${{\rm I}_{F1}}$$ and $${V_{F2}}$$ lags $${{\rm I}_{F2}}$$
EXAM MAP
Medical
NEET