1
GATE EE 2018
Numerical
+1
-0
The positive, negative and zero sequence impedances of a 125 MVA, three-phase, 15.5 kV,
star-grounded, 50 Hz generator are 𝑗0.1 pu, j0.05 pu and j0.01 pu respectively on the
machine rating base. The machine is unloaded and working at the rated terminal voltage. If
the grounding impedance of the generator is j0.01 pu, then the magnitude of fault current
for a b-phase to ground fault (in kA) is __________ (up to 2 decimal places).
Your input ____
2
GATE EE 2014 Set 2
Numerical
+1
-0
A three phase star-connected load is drawing power at a voltage of 0.9 pu and 0.8 power factor lagging. The three phase base power and base current are 100 MVA and 437.38 A respectively. The line-to-line load voltage in kV is __________.
Your input ____
3
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
For a fully transposed transmission line
4
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Three phase to ground fault takes place at locations $${F_1}$$ and $${F_2}$$ in the system shown in the figure.
If the fault takes place at location $${F_1}$$, then the voltage and the current at bus A are $${V_F1}$$ and $${{\rm I}_{F1}}$$ respectively. If the fault takes place at location $${F_2}$$, then the voltage and the current at bus A are $${V_{F2}}$$ and $${{\rm I}_{F2}}$$ respectively.
The correct statement about voltages and currents during faults at $${F_1}$$ and $${F_2}$$ is
Questions Asked from Symmetrical Components and Symmetrical and Unsymmetrical Faults (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits