1
GATE EE 2014 Set 2
Numerical
+1
-0
A three phase star-connected load is drawing power at a voltage of 0.9 pu and 0.8 power factor lagging. The three phase base power and base current are 100 MVA and 437.38 A respectively. The line-to-line load voltage in kV is __________.
Your input ____
2
GATE EE 2012
MCQ (Single Correct Answer)
+1
-0.3
The sequence components of the fault current are as follows:
$${{\rm I}_{positive}} = j1.5\,pu,\,\,{{\rm I}_{negative}} = - j0.5\,\,pu,$$
$${{\rm I}_{zero}} = - j1\,\,pu.$$ The typeof fault in the system is
A
$$LG$$
B
$$LL$$
C
$$LLG$$
D
$$LLLG$$
3
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
A 3-phase transmission line is shown in figure: GATE EE 2008 Power System Analysis - Symmetrical Components and Symmetrical and Unsymmetrical Faults Question 39 English

Voltage drop across the transmission line is given by the following equation: $$$\left[ {\matrix{ {\Delta {V_a}} \cr {\Delta {V_b}} \cr {\Delta {V_c}} \cr } } \right] = \left[ {\matrix{ {{Z_s}} & {{Z_m}} & {{Z_m}} \cr {{Z_m}} & {{Z_s}} & {{Z_m}} \cr {{Z_m}} & {{Z_m}} & {{Z_s}} \cr } } \right]\left[ {\matrix{ {{i_a}} \cr {{i_b}} \cr {{i_c}} \cr } } \right]$$$
Shunt capacitance of the line can be neglect. If the line has positive sequence impedance of $$15\,\,\Omega $$ and zero sequence in impedance of $$48\,\,\Omega ,$$ then the values of $${{Z_s}}$$ and $${{Z_m}}$$ will be

A
$${Z_s} = 31.5\,\Omega ;\,\,{Z_m} = 16.5\,\Omega $$
B
$${Z_s} = 26\,\Omega ;\,\,{Z_m} = 11\,\Omega $$
C
$${Z_s} = 16.5\,\Omega ;\,\,{Z_m} = 31.5\,\Omega $$
D
$${Z_s} = 11\,\Omega ;\,\,{Z_m} = 26\,\Omega $$
4
GATE EE 1997
MCQ (Single Correct Answer)
+1
-0.3
For a fault at the terminals of a synchronous generator, the fault current is maximum for a
A
3-phase fault
B
3-phase to ground fault
C
line-to ground fault
D
line-to-line fault
GATE EE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12