1
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The bus admittance matrix for a power system network is $$\left[ {\matrix{ { - j39.9} & {j20} & {j20} \cr {j20} & { - j39.9} & {j20} \cr {j20} & {j20} & { - j39.9} \cr } } \right]\,pu.$$\$
There is a transmission line connected between buses $$1$$ and $$3,$$ which is represented by the circuit shown in figure.

If this transmission line is removed from service what is the modified bus admittance matrix?

A
$$\left[ {\matrix{ { - j19.9} & {j20} & 0 \cr {j20} & { - j39.9} & {j20} \cr 0 & {j20} & { - j19.9} \cr } } \right]\,pu$$
B
$$\left[ {\matrix{ { - j39.95} & {j20} & 0 \cr {j20} & { - j39.9} & {j20} \cr 0 & {j20} & { - j39.95} \cr } } \right]\,pu$$
C
$$\left[ {\matrix{ { - j19.95} & {j20} & 0 \cr {j20} & { - j39.9} & {j20} \cr 0 & {j20} & { - j29.95} \cr } } \right]\,pu$$
D
$$\left[ {\matrix{ { - j19.95} & {j20} & {j20} \cr {j20} & { - j39.9} & {j20} \cr {j20} & {j20} & { - j19.95} \cr } } \right]\,pu$$
2
GATE EE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Determine the correctness or otherwise of the following Assertion (a) and the Reason (R).
Assertion (A): Fast decoupled load flow method gives approximate load flow solution because it uses several assumptions.
Reason (R): Accuracy depends on the power mismatch vector tolerance.
A
Both (A) and (R) are true and (R) is the correct reason for (A)
B
Both (A) and (R) are true but (R) is not the correct reason for (A)
C
Both (A) and (R) are false
D
(A) is false and (R) is true
3
GATE EE 2013
MCQ (Single Correct Answer)
+2
-0.6
In the following network, the voltage magnitudes at all buses are equal to $$1$$ p.u., the voltage phase angles are very small, and the line resistance are negligible. All the line reactances are equal to $$j1\Omega .$$

The voltage phase angles in rad at buses $$2$$ and $$3$$ are

A
$${\theta _2} = - 0.1,\,\,\,{\theta _3} = - 0.2$$
B
$${\theta _2} = 0,\,\,\,{\theta _3} = - 0.1$$
C
$${\theta _2} = 0.1,\,\,\,{\theta _3} = 0.1$$
D
$${\theta _2} = 0.1,\,\,\,{\theta _3} = 0.2$$
4
GATE EE 2013
MCQ (Single Correct Answer)
+2
-0.6
For a power system network with $$n$$ nodes, $${Z_{33}}$$ of its bus impedance matrix is $$j0.5$$ per unit. The voltage at mode $$3$$ is $$1.3\angle - {10^0}\,\,$$ per unit. If a capacitor having reactance of $$-j3.5$$ per unit is now added to the network between node $$3$$ and the reference node, the current drawn by the capacitor per unit as
A
$$0.325\angle - {100^0}$$
B
$$0.325\angle - {80^0}$$
C
$$0.371\angle - {100^0}$$
D
$$0.433\angle - {80^0}$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12