1
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
The average heat transfer coefficient on a thin hot vertical plate suspended in still air can be determined from observations of the change in plate temperature with time as it cools. Assume the plate temp to be uniform at any instant of time and radiation heat exchange with the surroundings is negligible. The ambient temperature is $${25^ \circ }C,$$ the plate has a total surface area of $$0.1{m^2}$$ and a mass of $$4$$ kg.

The specific heat of the plate material is $$2.5KJ/KgK.$$ The convective heat transfer coefficient in $$W/{m^2}K,$$ at instant when the plate temp is $${225^ \circ }C$$ and the change in plate temp with time $$dT/dt=-0.02K/s,$$ is

A
$$200$$
B
$$20$$
C
$$15$$
D
$$10$$
2
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
An un-insulated air conditioning duct of rectangular cross section $$1\,\,m \times 0.5\,m,$$ carrying air at $${20^ \circ }C$$ with a velocity of $$10 m/s,$$ is exposed to an ambient of $${30^ \circ }C$$. Neglect the effect of duct construction material. For air in the range of $${20-30^ \circ }C,$$ data are as follows: thermal conductivity $$=0.025 W/m.K;$$ viscosity $$ = 18\mu Pa.s;$$ Prandtl number $$=0.73;$$ density $$= 1.2$$ $$kg/{m^3}.$$. The laminar flow Nusselt number is $$3.4$$ for constant wall temperature conditions and, for turbulent flow, $$Nu = 0.023\,\,R{e^{0.8}}\,{\Pr ^{0.33}}.$$

The Reynolds number for the flow is

A
$$444$$
B
$$890$$
C
$$4.44 \times {10^5}$$
D
$$5.33 \times {10^5}$$
3
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
An un-insulated air conditioning duct of rectangular cross section $$1\,\,m \times 0.5\,m,$$ carrying air at $${20^ \circ }C$$ with a velocity of $$10 m/s,$$ is exposed to an ambient of $${30^ \circ }C$$. Neglect the effect of duct construction material. For air in the range of $${20-30^ \circ }C,$$ data are as follows: thermal conductivity $$=0.025 W/m.K;$$ viscosity $$ = 18\mu Pa.s;$$ Prandtl number $$=0.73;$$ density $$= 1.2$$ $$kg/{m^3}.$$. The laminar flow Nusselt number is $$3.4$$ for constant wall temperature conditions and, for turbulent flow, $$Nu = 0.023\,\,R{e^{0.8}}\,{\Pr ^{0.33}}.$$

The heat transfer per meter length of the duct, in watts, is

A
$$3.8$$
B
$$5.3$$
C
$$89$$
D
$$769$$
4
GATE ME 2003
MCQ (Single Correct Answer)
+2
-0.6
Consider a laminar boundary layer over a heated flat plate. The free stream velocity is $${U_\infty }.$$ At some distance $$x$$ from the leading edge the velocity boundary layer thickness is $${\delta _v}$$ and the thermal boundary layer is $${\delta _r}.$$ If the Prandtl number is greater than $$1,$$ then
A
$${\delta _v} > {\delta _r}$$
B
$${\delta _r} > {\delta _v}$$
C
$${\delta _v} = {\delta _r} \sim \left( {{U_\infty }} \right)$$
D
$${\delta _v} = {\delta _r} \sim {x^{ - 1/2}}$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12