1
GATE ME 2010
MCQ (Single Correct Answer)
+2
-0.6
Match the following

List-$${\rm I}$$
$$P.$$ Compressible flow
$$Q.$$ Free surface flow
$$R.$$ Boundary layer flow
$$S.$$ Pipe flow
$$T.$$ Heat convection

List-$${\rm II}$$
$$U.$$ Renolds number
$$V.$$ Nussult number
$$W.$$ Weber number
$$X.$$ Froude number
$$Y.$$ Mach number
$$Z.$$ Skin friction coefficient

A
$$P - U,\,\,Q - X,\,\,R - V,\,\,S - Z,\,\,T - W$$
B
$$P - W,\,\,Q - X,\,\,R - Z,\,\,S - U,\,\,T - V$$
C
$$P - Y,\,\,Q - W,\,\,R - Z,\,\,S - U,\,\,T - X$$
D
$$P - Y,\,\,Q - W,\,\,R - Z,\,\,S - U,\,\,T - V$$
2
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
The temp distribution within the Laminar thermal boundary layer over a heated isothermal flat plate is given by
$$\left( {T - {T_w}} \right)/\left( {{T_\infty } - {T_w}} \right) = \left( {3/2} \right)\,\,\left( {y/{\delta _t}} \right) - \left( {1/2} \right){\left( {y/{\delta _t}} \right)^3},$$
where $${{T_w}}$$ and $${{T_ \propto }}$$ are the temp of plate and free stream respectively, and $$'y'$$ is the normal distance measuread from the plate. The ratio of Average to the local Nussult number based on the thermal boundary layer thickness $${{\delta _t}}$$ is given by
A
$$1.33$$
B
$$1.5$$
C
$$2.0$$
D
$$4.64$$
3
GATE ME 2007
MCQ (Single Correct Answer)
+2
-0.6
The average heat transfer coefficient on a thin hot vertical plate suspended in still air can be determined from observations of the change in plate temperature with time as it cools. Assume the plate temp to be uniform at any instant of time and radiation heat exchange with the surroundings is negligible. The ambient temperature is $${25^ \circ }C,$$ the plate has a total surface area of $$0.1{m^2}$$ and a mass of $$4$$ kg.

The specific heat of the plate material is $$2.5KJ/KgK.$$ The convective heat transfer coefficient in $$W/{m^2}K,$$ at instant when the plate temp is $${225^ \circ }C$$ and the change in plate temp with time $$dT/dt=-0.02K/s,$$ is

A
$$200$$
B
$$20$$
C
$$15$$
D
$$10$$
4
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
An un-insulated air conditioning duct of rectangular cross section $$1\,\,m \times 0.5\,m,$$ carrying air at $${20^ \circ }C$$ with a velocity of $$10 m/s,$$ is exposed to an ambient of $${30^ \circ }C$$. Neglect the effect of duct construction material. For air in the range of $${20-30^ \circ }C,$$ data are as follows: thermal conductivity $$=0.025 W/m.K;$$ viscosity $$ = 18\mu Pa.s;$$ Prandtl number $$=0.73;$$ density $$= 1.2$$ $$kg/{m^3}.$$. The laminar flow Nusselt number is $$3.4$$ for constant wall temperature conditions and, for turbulent flow, $$Nu = 0.023\,\,R{e^{0.8}}\,{\Pr ^{0.33}}.$$

The Reynolds number for the flow is

A
$$444$$
B
$$890$$
C
$$4.44 \times {10^5}$$
D
$$5.33 \times {10^5}$$
GATE ME Subjects
Turbo Machinery
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12