1
Numerical

GATE ME 2014 Set 2

Water flows through a tube of diameter $$25mm$$ at an average velocity of $$1.0m/s.$$ The properties of water are $$\rho = 1000\,\,kg/{m^3},$$ $$\mu = 7.25 \times {10^{ - 4}}\,\,N.s/{m^2},$$ $$\,K = 0.625W/m.K,$$ $$Pr=4.85.$$ Using $$Nu=0.023$$ $$R{e^{0.8}}\,\,{\Pr ^{0.4}},$$ the convective heat transfer coefficient (in $$W/{m^2}.K$$) is ______________.
Your Input ________

Answer

Correct answer is between 6800 and 6900
2
Numerical

GATE ME 2014 Set 1

Consider one dimensional steady state heat conduction across a wall (as shown in figure below) of thickness $$30$$ $$mm$$ and thermal conductivity $$15$$ $$W/m.K.$$ At $$x=0,$$ a constant heat flux, $$q'' = 1 \times {10^5}\,\,W/{m^2}$$ is applied. On the other side of the wall, heat is removed from the wall by convection with a fluid at $${25^ \circ }C$$ and heat transfer coefficient of $$250W/{m^2}.K.$$ The temperature (in $${}^ \circ C$$), at $$x=0$$ is ___________
Your Input ________

Answer

Correct answer is between 620 and 630
3
MCQ (Single Correct Answer)

GATE ME 2014 Set 1

The non-dimensional fluid temperature profile near the surface of a convectively cooled flat plate is given by $${{{T_w} - T} \over {{T_w} - {T_\infty }}} = a + b{y \over L} + c{\left( {{y \over L}} \right)^2},$$ where $$y$$ is measured perpendicular to the plate, $$L$$ is the length, and $$a,b$$ and $$c$$ are arbitrary constants. $${{T_w}}$$ and $${{T_\infty }}$$ are wall and ambiyent temperatures, respectively. If the thermal conductivity of the fluid is $$k$$ and the wall heat flux is $$q'',$$ the Nusselt number $$\,{N_u} = {{q''} \over {{T_w} - {T_\infty }}}{L \over k}$$ is equal to
A
$$a$$
B
$$b$$
C
$$2c$$
D
$$(b+2c$$)
4
MCQ (Single Correct Answer)

GATE ME 2011

The ratios of the laminar hydrodynamic boundary layer thickness to thermal boundary layer thickness of flows of two fluids $$P$$ and $$Q$$ on a flat plate are $${1 \over 2}$$ and $$2$$ respectively. The Reynolds number based on the plate length for both the flows is $${10^4}.$$ The Prandtl and Nusselt numbers for $$P$$ are $${1 \over 8}$$ and $$35$$ respectively. The Prandtl and Nusselt number for $$Q$$ are respectively
A
$$8$$ and $$140$$
B
$$8$$ and $$70$$
C
$$4$$ and $$70$$
D
$$4$$ and $$35$$

EXAM MAP

Graduate Aptitude Test in Engineering

GATE ECE GATE CSE GATE CE GATE EE GATE ME GATE PI GATE IN

Joint Entrance Examination

JEE Main JEE Advanced