1
GATE ME 2016 Set 1
Numerical
+2
-0
A fluid (Prandtl number, $$Pr=1$$) at $$500$$ $$K$$ flows over a flat plate of $$1.5$$ $$m$$ length, maintained at $$300$$ $$K.$$ The velocity of the fluid is $$10\,\,m/s.$$ Assuming kinematic viscosity, $$v = 30 \times {10^{ - 6}}\,\,{m^2}/s,$$ the thermal boundary layer thickness (in $$mm$$) at $$0.5$$ $$m$$ from the leading edge is _________.
Your input ____
2
GATE ME 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
For flow through a pipe of radius $$R,$$ the velocity and temperature distribution are as follows:
$$U\left( {r,x} \right) = {C_1}$$ and $$T\left( {r,x} \right) = {C_2}\left[ {1 - {{\left( {{r \over R}} \right)}^3}} \right],$$
where $${C_1}$$ and $${C_2}$$ are constants. The bulk mean temperature is given by
$${T_m} = {2 \over {{U_m}{R^2}}}\int\limits_0^R {u\left( {r,x} \right)T\left( {r,x} \right)rdr,} $$
with $${{U_m}}$$ being the mean velocity of flow. The value of $${T_m}$$ is
$$U\left( {r,x} \right) = {C_1}$$ and $$T\left( {r,x} \right) = {C_2}\left[ {1 - {{\left( {{r \over R}} \right)}^3}} \right],$$
where $${C_1}$$ and $${C_2}$$ are constants. The bulk mean temperature is given by
$${T_m} = {2 \over {{U_m}{R^2}}}\int\limits_0^R {u\left( {r,x} \right)T\left( {r,x} \right)rdr,} $$
with $${{U_m}}$$ being the mean velocity of flow. The value of $${T_m}$$ is
3
GATE ME 2014 Set 2
Numerical
+2
-0
Water flows through a tube of diameter $$25mm$$ at an average velocity of $$1.0m/s.$$ The properties of water are $$\rho = 1000\,\,kg/{m^3},$$ $$\mu = 7.25 \times {10^{ - 4}}\,\,N.s/{m^2},$$ $$\,K = 0.625W/m.K,$$ $$Pr=4.85.$$ Using $$Nu=0.023$$ $$R{e^{0.8}}\,\,{\Pr ^{0.4}},$$ the convective heat transfer coefficient (in $$W/{m^2}.K$$) is ______________.
Your input ____
4
GATE ME 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The non-dimensional fluid temperature profile near the surface of a convectively cooled flat plate is given by $${{{T_w} - T} \over {{T_w} - {T_\infty }}} = a + b{y \over L} + c{\left( {{y \over L}} \right)^2},$$ where $$y$$ is measured perpendicular to the plate, $$L$$ is the length, and $$a,b$$ and $$c$$ are arbitrary constants. $${{T_w}}$$ and $${{T_\infty }}$$ are wall and ambiyent temperatures, respectively. If the thermal conductivity of the fluid is $$k$$ and the wall heat flux is $$q'',$$ the Nusselt number $$\,{N_u} = {{q''} \over {{T_w} - {T_\infty }}}{L \over k}$$ is equal to
Questions Asked from Convection (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude