1
GATE ME 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The non-dimensional fluid temperature profile near the surface of a convectively cooled flat plate is given by $${{{T_w} - T} \over {{T_w} - {T_\infty }}} = a + b{y \over L} + c{\left( {{y \over L}} \right)^2},$$ where $$y$$ is measured perpendicular to the plate, $$L$$ is the length, and $$a,b$$ and $$c$$ are arbitrary constants. $${{T_w}}$$ and $${{T_\infty }}$$ are wall and ambiyent temperatures, respectively. If the thermal conductivity of the fluid is $$k$$ and the wall heat flux is $$q'',$$ the Nusselt number $$\,{N_u} = {{q''} \over {{T_w} - {T_\infty }}}{L \over k}$$ is equal to
2
GATE ME 2014 Set 1
Numerical
+2
-0
Consider one dimensional steady state heat conduction across a wall (as shown in figure below) of thickness $$30$$ $$mm$$ and thermal conductivity $$15$$ $$W/m.K.$$ At $$x=0,$$ a constant heat flux, $$q'' = 1 \times {10^5}\,\,W/{m^2}$$ is applied. On the other side of the wall, heat is removed from the wall by convection with a fluid at $${25^ \circ }C$$ and heat transfer coefficient of $$250W/{m^2}.K.$$ The temperature (in $${}^ \circ C$$), at $$x=0$$ is
___________
Your input ____
3
GATE ME 2011
MCQ (Single Correct Answer)
+2
-0.6
The ratios of the laminar hydrodynamic boundary layer thickness to thermal boundary layer thickness of flows of two fluids $$P$$ and $$Q$$ on a flat plate are $${1 \over 2}$$ and $$2$$ respectively. The Reynolds number based on the plate length for both the flows is $${10^4}.$$ The Prandtl and Nusselt numbers for $$P$$ are $${1 \over 8}$$ and $$35$$ respectively. The Prandtl and Nusselt number for $$Q$$ are respectively
4
GATE ME 2010
MCQ (Single Correct Answer)
+2
-0.6
Match the following
List-$${\rm I}$$
$$P.$$ Compressible flow
$$Q.$$ Free surface flow
$$R.$$ Boundary layer flow
$$S.$$ Pipe flow
$$T.$$ Heat convection
List-$${\rm II}$$
$$U.$$ Renolds number
$$V.$$ Nussult number
$$W.$$ Weber number
$$X.$$ Froude number
$$Y.$$ Mach number
$$Z.$$ Skin friction coefficient
Questions Asked from Convection (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude